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Abstract: This paper provides a two phase sampling 

estimator of population mean using auxiliary 

information. Its bias and mean square error are 

found. Comparative studies with some of the well 

known estimators have been done. An empirical study 

is also given as an illustration. 

 

 Keywords: Auxiliary Variable, Bias, Mean Squared 

Error and Efficiency.   

 

1. Introduction: 

One of the major developments in sample surveys 

over the last five decades is the use of auxiliary 

information and statisticians make use of this 

information available on an auxiliary variable with 

the variable under study for improving the 

efficiency of an estimator. For better understanding 

one may see Cochran (1977), Des Raj (1968), 

Murthy (1967), Mukhopadhyay (2012), Singh & 

Chaudhary (1997) and Sukhatme et, al. (1984). It is 

well known that the auxiliary information in 

sample surveys results in substantial improvement 

in the precision of the estimators of the population 

parameters and we know that sometimes 

parameters of the auxiliary variables are not known 

in advance then double or two phase sampling 

technique is used.  In double sampling or two-

phase sampling technique, we first take a 

preliminary large sample of size n (called first 

phase sample) from a population of size N and then 

a sub-sample of size n (called second phase 

sample) is drawn from the first phase sample of 

size n  using simple random sampling without 

replacement at both the phases. At first phase 

sample of size n, only the auxiliary variable X  be 

observed but at the second phase sample of size n, 

the study variable Y and the auxiliary variable X  

both are observed. 
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be the population correlation coefficient between y   and x . 
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Let the first phase sample of size n  be  nxxx  .,..,, 21  on x  and the second phase sample of size n  be 
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estimator of population mean X  and the second phase sample mean 
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respectively on y and x . 

For simplicity, it is assumed that N  is large enough as compared to n  so that finite population correction terms 

may be ignored. A new improved two phase sampling estimator represented by ŷ  for estimating the population 

mean is proposed as  
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  and b  is an estimate of the change in y

 
 when x  is increased by unity. 

2. Bias and Mean Square Error of the Proposed Estimator:  
In order to obtain bias and mean square error of the proposed estimator, let us denote by 
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so that ignoring finite population correction, for simplicity we have 
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The proposed two phase sampling estimator represented by ŷ  for estimating the population mean given in (1.1) 

is 
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In terms of ie ’s, 3,2,1,0i ; the above proposed two phase sampling estimator up to terms of order  nO 1
 

reduces to 
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Taking expectation on both the sides of (2.5), the bias of ŷ  up to terms of order  nO 1  is given by  
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Now squaring both sides of (2.5) and taking expectation, the mean squared error up to terms of order  nO 1  is 

given by  
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using values of the expectation given in (2.2) and (2.3), we have
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which attains the minimum for the optimum value 
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Substituting the value of k  given by (2.8) in (2.7), we get the minimum mean squared error of ŷ  to be  
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3. Efficiency Comparison: 

(i) General estimator of mean in case of SRSWOR:  

The general estimator of mean in case of SRSWOR is yywor 
ˆ with    

n
yMSE 20ˆ 


        (3.1) 

It is clear that the proposed estimator is more efficient than the estimator worŷ based on simple random sampling 

when no auxiliary information is used.  

(ii) Usual double sampling regression estimator:  

The usual double sampling regression estimator is   xxbyyld   with 
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It is clear that the proposed estimator is more efficient than the usual double sampling regression estimator 

where the auxiliary information already is in use. 

 

4. Empirical Study: 
To illustrate the performance of the proposed estimator, let us consider the following data  

Population I: Cochran (1977, Page Number- 181) 

y  : Paralytic Polio Cases ‘placebo’ group 
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x  : Paralytic Polio Cases in not inoculated group 

02 = 71.8650173, 20 = 9.889273356, 11 = 19.4349481, 12 = 346.3174191,  

03 = 1453.077703, 40 = 424.1846721, 21 = 94.21286383, 22 = 3029.312542,  

30 = 47.34479951, 04 = 46132.5679, y = 2.588235294, x = 8.370588235,  

xS = 8.477323711, yS = 3.144721507,  =0.729025009,  y2 = 4.337367369, 

 x2 = 8.932490454, XC = 1.012751251, YC =1.215006037,  = 0.270436839,  

n = 34, n=50 (say). 

 woryMSE ˆ = 0.290860981,  ldyMSE  = 0.241393443 and  minŷMSE = 0.239722289 

PRE of the proposed estimator ŷ over worŷ = 121.3324727. 

PRE of the proposed estimator ŷ over ldy = 100.6971207. 

 

Population II: Mukhopadhyay (2012, Page Number - 104) 

y  : Quality of raw materials (in lakhs of bales)  

x  : Number of labourers (in thousands) 

02 = 9704.4475, 20 = 90.95, 11 = 612.725, 12 = 93756.3475, 03 = 988621.5173, 

40 = 35456.4125, 21 = 11087.635, 22 = 2893630.349, 30 = 1058.55, 04 = 341222548.2, 

y = 41.5, x = 441.95, xS = 98.51115419, yS = 9.536770942,  =0.652197067,  

 y2 = 4.286367314,  x2 = 3.623231573, XC = 0.22290113, YC =0.229801709, 

 =0.063138576, n  = 20, n=35 (say). 

 woryMSE ˆ = 4.5475,  ldyMSE = 3.718501766 and
 

 minŷMSE = 3.600902564. 

PRE of the proposed estimator ŷ over worŷ = 126.2877826. 

PRE of the proposed estimator ŷ over ldy = 103.2658257. 

 

Population III: Murthy (1967, Page Number - 398) 

y  : Number of absentees  

x  : Number of workers 

02 = 1299.318551, 20 = 42.13412655, 11 = 154.6041103, 12 = 5086.694392,  

03 = 32025.12931, 40 = 11608.18508, 21 = 1328.325745, 22 = 148328.4069,  

30 = 425.9735118, 04 = 4409987.245, y = 9.651162791, x = 79.46511628,  

xS = 36.04606151, yS = 6.491080538,  = 0.660763765,  y2 = 6.53877409,  

 x2 = 2.612197776, XC = 0.453608617, XC = 0.672569791,  = 0.118988612, 

 n = 43, n=50 (say). 

 woryMSE ˆ = 0.979863408,  ldyMSE = 0.919969037 and
 

 minŷMSE = 0.917340179. 

PRE of the proposed estimator ŷ over worŷ = 106.8157081. 

PRE of the proposed estimator ŷ over ldy = 100.2865739. 

 

Population IV: Singh and Chaudhary (1997, Page Number - 176) 

y  :  Total number of guava trees 

x  : Area under guava orchard (in acres) 

02 = 12.50056686, 20 = 187123.9172, 11 = 1377.39858, 12 = 4835.465464,  

03 = 37.09863123, 40 = 1.48935E+11, 21 = 712662.4414, 22 = 8747904.451,  
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30 = 100476814.5, 04 = 540.1635491, y = 746.9230769, x = 5.661538462,  

xS = 3.535614072, yS = 432.5782209,  = 0.900596235,  y2 = 4.253426603,  

 x2 = 3.456733187, 
XC = 0.624497051, 

YC = 0.579146949, 
 
= 110.1868895,  

n = 13, n=30 (say). 

 woryMSE ˆ = 14394.14747,  ldyMSE = 7778.476942 and
 

 minŷMSE = 7697.255082 

PRE of the proposed estimator ŷ over worŷ = 187.0036438. 

PRE of the proposed estimator ŷ over ldy = 101.0552055. 

 

Population V: Singh and Chaudhary (1997, Page Number: 154-155) 

y  :  Number of milch animals in survey 

x  : Number of milch animals in census 

 02 = 431.5847751, 20 = 270.9134948, 
11 = 247.3944637, 

12 = 3119.839406,  

03 = 5789.778954, 40 = 154027.4827, 21 = 2422.297374, 22 = 210594.3138,  

30 = 2273.46265, 04 = 508642.4447, y = 1133.294118, x = 1140.058824,  

xS = 20.77461853, yS = 16.45945002,  = 0.723505104,  y2 = 2.098635139,  

 x2 = 2.730740091, XC = 0.018222409, 
YC = 0.014523547,  = 0.573223334,  

n = 17, n=30 (say). 

 woryMSE ˆ = 15.93609,  ldyMSE = 12.32127 and
 

 minŷMSE = 12.31804899. 

PRE of the proposed estimator ŷ over worŷ = 129.3718505. 

PRE of the proposed estimator ŷ over ldy = 100.0261091. 

 

5. Conclusions: 
(i) From (2.9) it is clear that the proposed two 

phase sampling estimator is more efficient 

than the estimator worŷ based on simple 

random sampling when no auxiliary 

information is used and is also more 

efficient than the usual double sampling 

regression estimator ldy
 
of mean where 

the auxiliary information already is in use. 

(ii) From (2.8), the mean squared error of the 

estimator ŷ  is minimized for the 

optimum value 
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    (5.1) 

The optimum value involving some unknown 

parameters may not be known in   advance for 

practical purposes; hence the alternative is to 

replace the unknown parameters of the optimum 

value by their unbiased estimators giving estimator 

depending upon estimated optimum value. 
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