
Overview of Pipelining Computing
Simmi Bagga

#1
, Satinder Kaur

 *2

1.
#
 Assistant Professor, Sant Hira Dass Kanya Maha Vidyalaya,

Kala Sanghian,Kapurthala, India,E-mail: simmibagga12@gmail.com

2.
*
 Assistant Professor, GNDU, RC, Sathiala, India

Abstract— Pipelining is one form of embedding parallelism or

concurrency in a computer system. It refers to a segmentation of

a computational process into several sub processes which are

executed by dedicated autonomous units. In this paper, will

discuss about the Pipelining computing and its various type and

described the classification of pipelining. We also described

various classifications of pipelining on the basis of Level of

processing, Pipeline configuration and Type of instruction and

data and how these types helps in effective computing. This

paper also explains how pipeline allows multiple instructions to

be processed at the same time.

Keywords— Pipelining, Instruction Pipelining, Arithmetic

Pipelining, Processor Pipelining.

I. INTRODUCTION

The pipeline is divided into segments and each segment can

execute its operation concurrently with the other segments.

When a segment completes an operation, it passes the result

to the next segment in the pipeline and fetches the next

operation from the preceding segment. The final results of

each instruction emerge at the end of the pipeline in rapid

succession.

In computers, a pipeline is the continuous and somewhat

overlapped movement of instruction to the processor or in

the arithmetic steps taken by the processor to perform an

instruction. An overlapped function that is used to increase the

speed of system called Pipelining. It can divide tasks into

subtasks and increase the speed of the entire system.

Pipelining in a computer system is similar to assembly that is

in industrial plant. To, achieve Pipelining one must subdivide

the input task into sequence of subtasks. Pipelining is the use

of a pipeline. Without a pipeline, a computer processor gets

the first instruction from memory, performs the operation it

calls for, and then goes to get the next instruction from

memory, and so forth. While fetching (getting) the instruction,

the arithmetic part of the processor is idle. It must wait until it

gets the next instruction. With pipelining, the computer

architecture allows the next instructions to be fetched while

the processor is performing arithmetic operations, holding

them in a buffer close to the processor until each instruction

operation can be performed. The staging of instruction

fetching is continuous. The result is an increase in the number

of instructions that can be performed during a given time

period

Pipelining is sometimes compared to a manufacturing

assembly line in which different parts of a product are being

assembled at the same time although ultimately there may be

some parts that have to be assembled before others are. Even

if there is some sequential dependency, the overall process can

take advantage of those operations that can proceed

concurrently. Computer processor pipelining is sometimes

divided into an instruction pipeline and an arithmetic pipeline.

The instruction pipeline represents the stages in which an

instruction is moved through the processor, including its being

fetched, perhaps buffered, and then executed. The arithmetic

pipeline represents the parts of an arithmetic operation that

can be broken down and overlapped as they are performed.

Pipelines and pipelining also apply to computer memory

controllers and moving data through various memory staging

places.

Computer processors can handle millions of instructions each

second. Once one instruction is processed, the next one in line

is processed, and so on. A pipeline allows multiple

instructions to be processed at the same time. While one stage

of an instruction is being processed, other instructions may be

undergoing processing at a different stage. Without a pipeline,

each instruction would have to wait for the previous one to

finish before it could even be accessed.

II. CLASSIFICATION OF PIPELINING

 Classification of pipelining is based on:

1. Level of processing

2. Pipeline configuration

3. Type of instruction and data

1. Level Processing

 Instruction pipelining: This method is also called

instruction look ahead. An instruction cycle has fetch

opcode, decode opcode, compute operand addresses,

fetch operands, and execute instructions. In

instruction pipelining this process are over lapped.

 Arithmetic pipelining: The processor is segmented

for pipelined operations in various formats.

2. Pipeline Configuration

 Unifunction: These are pipe line units with fixed or

dedicated functions. They are not reconfigurable.

 Multifunction pipelines: They can be used for

multiple purposes according to the need. They can

also be reconfigured.

3. Type of instruction and data

 Static pipelining: It assumes only one functional

configuration at a time. Static pipelines can be

International Journal of Advanced and Innovative Research (2278-7844) / # 139 / Volume 5 Issue 6

 © 2016 IJAIR. All Rights Reserved 139

unifunctional or multifunctional but piping needs

continuous execution of instructions of the same type

for its efficiency multifunctional would not be

efficient.

 Dynamic pipelining: A dynamic pipeline processor

allows multiple functional configurations to exist

simultaneously. So a dynamic pipeline can be

multifunctional.

III. TYPES OF PIPELINING

All Types of pipelining are as follows:

1. Instruction Pipelining.

2. Arithmetic Pipelining

3. Processor Pipelining.

Instruction Pipelining.

An instruction pipeline is a technique used in the design of

computers and other digital electronic devices to increase their

instruction throughput (the number of instructions that can be

executed in a unit of time). Pipelining doesn't reduce the time

it takes to complete an instruction; it increases the number of

instructions that can be processed at once, thus reducing the

delay between completed instructions.

The fundamental idea is to split the processing of a computer

instruction into a series of independent steps, with storage at

the end of each step. This allows the computer's control

circuitry to issue instructions at the processing rate of the

slowest step, which is much faster than the time needed to

perform all steps at once. The term pipeline refers to the fact

that each step is carrying data at once (like water), and each

step is connected to the next (like the links of a pipe.)

The origin of pipelining is thought to be either the ILLIAC II

project or the IBM Stretch project though a simple version

was used earlier in the Z1in 1939 and the Z3 in 1941.

The IBM Stretch Project proposed the terms, "Fetch, Decode,

and Execute" that became common usage. In this 'fetch' means

that processor can fetch data from user and 'decode' means

that it can convert data into machine language. After these

terms processor can execute data.

The IBM Stretch Project proposed the terms, "Fetch, Decode,

and Execute" that became common usage. In this 'fetch' means

that processor can fetch data from user and 'decode' means

that it can convert data into machine language. After these

terms processor can execute data.

1. Instruction fetch

2. Instruction decode and register fetch

3. Execute

4. Memory access

5. Register write back

When a programmer (or compiler) writes assembly code, they

make the assumption that each instruction is executed before

execution of the subsequent instruction is begun. This

assumption is invalidated by pipelining. When this causes a

program to behave incorrectly, the situation is known as a

hazard. Various techniques for resolving hazards such as

forwarding and stalling exist.

Processors with pipelining are organized inside into stages

which can semi-independently work on separate jobs. Each

stage is organized and linked into a 'chain' so each stage's

output is fed to another stage until the job is done. This

organization of the processor allows overall processing time to

be significantly reduced.

A deeper pipeline means that there are more stages in the

pipeline, and therefore, fewer logic gates in each stage. This

generally means that the processor's frequency can be

increased as the cycle time is lowered. This happens because

there are fewer components in each stage of the pipeline.

All instructions are not independent. In a simple pipeline,

completing an instruction may require 5 stages. To operate at

full performance, pipeline will need to run 4 subsequent

independent instructions while the first is completing. If 4

instructions that do not depend on the output of the first

instruction are not available, the pipeline control logic must

insert a stall or wasted clock cycle into the pipeline until the

dependency is resolved. Fortunately, techniques such as

forwarding can significantly reduce the cases where stalling is

required. While pipelining can in theory increase performance

over an unpipelined core by a factor of the number of stages

(assuming the clock frequency also scales with the number of

stages), in reality, most code does not allow for ideal

execution.

Pipelining does not help in all cases. There are several

possible disadvantages. An instruction pipeline is said to be

fully pipelined if it can accept a new instruction every clock

cycle. A pipeline that is not has wait cycles that delay the

progress of the pipeline. Some advantages are the cycle time

of the processor is reduced, thus increasing instruction issue-

rate in most cases. Some combinational circuits such as adders

or multipliers can be made faster by adding more circuitry. If

pipelining is used instead, it can save circuitry vs. a more

complex combinational circuit. The main advantage of

Pipelining is that all the components of the CPU will be active

there by increasing the throughput.
Pipelining also has some disadvantages that are a non-

pipelined processor executes only a single instruction at a time.

This prevents branch delays (in effect, every branch is delayed)

and problems with serial instructions being executed

concurrently. Consequently the design is simpler and cheaper

to manufacture. The instruction latency in a non-pipelined

processor is slightly lower than in a pipelined equivalent. This

is because extra flip flops must be added to the data path of a

pipelined processor. A nonpipelined processor will have a

stable instruction bandwidth. The performance of a pipelined

processor is much harder to predict and may vary more widely

between different programs.

Arithmetic pipelining

Arithmetic pipelines are differ from instruction pipelines in

some tasks. They are generally synchronous. This means that

each stage executes in a fixed number of clock cycles. In a

synchronous pipeline, no buffering between stages is provided.

Each stage can accept the data passed from last stage when

data is produced. Arithmetic pipelining can be segmentized by

International Journal of Advanced and Innovative Research (2278-7844) / # 140 / Volume 5 Issue 6

 © 2016 IJAIR. All Rights Reserved 140

the processor. Well-known arithmetic pipelining processors

are as the four-pipe stages are used in star-100, the eight pipe

stages are used in the TI-ASC and up to 14 stages pipeline is

used in cray-1 and upto.

The pipeline structures used for instruction pipelining may be

applied in some cases to other processing tasks. If pipelining

is to be useful, however, we must be faced with the need to

perform a long sequence of essentially similar tasks. Large

numerical applications often make use of repeated arithmetic

operations for processing the elements of vectors and arrays.

Architectures specialized for applications if this type often

provides pipelines to speed processing of floating-point

arithmetic sequences. This type of pipelining is called

arithmetic pipelining.

Another important difference is that an arithmetic pipeline

may be nonlinear. The "stages" in this type of pipeline are

associated with key processing components such as adders,

shifters, etc. Instead of a steady progression through a fixed

sequence of stages, a task in a nonlinear pipeline may use

more than one stage at a time, or may return to the same stage

at several points in processing.

Processor pipelining

This refers to the pipeline processing of the same data whereas

by a cascade of processors, each of which processors a

specific task. The data stream passes the first processor with

results stored in a secondary block which is also accessible by

the second processor. The second processor passes the

accessed result to the third processor and so on. This can

proposed the following three pipelines:

 Unifunction vs multifunction pipelines: A pipeline

unit with a fixed and dedecated function such as the

floating point adder is called unifunction. The cray-1

has 12 unifunctional pipeline stages .a multifunction

pipe may perform different functions, either at

different time or the same time, by interconnecting

different stages in the pipeline. the T1-ASC has four

multifunction pipeline processors.

 Static vs dynamic: A static pipeline may ssume only

one functional configuration at a time. Static pipeline

can be either unifunctional or multifunctional.

Pipelining is made possible in static pages only if

instructions of the data type are to be executed

continuously. The function performed by the static

pipeline should not change frequently. A dynamic

pipeline processor permits several functional

configuration to exist simultaneously. In this sense, a

dynamic pipeline must be multifunctional. On the

other hand, a unifunctional pipeline must be static.

 Scalar vs vector: Depending on the instructions or

data types, pipeline processors can be classified as

scalar pipelines and vector pipelines. A scalar

pipeline processors is sequence of scalar operands

under the control of do loop. vector pipelines re

commonly used to control the vector instruction.

vector pipeline, use the hardware control and

firmware control. The vector is the part of the scalar

i.e. it is made from scalar.

IV. CONCLUSIONS

 Pipelined processors represent an intelligent approach to

speeding up instruction processing when the memory access

time has improved to a certain extent. The pipeline structures

used for pipelining may be applied in some cases to other

processing tasks. If pipelining is to be useful, however, we

must be faced with the need to perform a long sequence of

essentially similar tasks. In this paper we described various

classifications of pipelining on the basis of Level of

processing, Pipeline configuration and Type of instruction and

data.

REFERENCES

[1] MCINTYRE, D. "An introduction to the ILLIAC IV computer,"

Datamation (April 1970), 60-67.

[2] EVENSEN, A. J.; AND TROY, J.L. "Introduction to the architecture of a
288- element PEPE," in Proc. 1973 Sagamore Conf. on Parallel Processing,

Springer-Verlag, N.Y. 1973, pp. 162-169.

[3] RUDOLPH, J. A. "A production implementation of an associattve array
processor-- TARAN," in AFIPS 197~ Fall Jt. Computer Conf., AFIPS Press,

Montvale, N.J., 1972.

[4] MAEVEL, O. E. "HAPPE--Honeywell associative parallel processing
ensemble," in Proe. Symp. on Computer Architecture, Univ.of Florida, 1973.

[5] STANGA, D.C. "Univacll0 multiprocessor system," in AFIPS 1967

Spring Jr. Computer Conf., Thompson Book Co., Washington.
[6] Sunggu Lee ,Design of Computers and Other Complex Digital

Devices, PrenticeHall

International Journal of Advanced and Innovative Research (2278-7844) / # 141 / Volume 5 Issue 6

 © 2016 IJAIR. All Rights Reserved 141

