On Vertex Prime Cordial Labeling On Some Graphs

Dr.J.Devaraj#1,S.P.Reshma#2

¹Associate professor, Department of Mathematics, N.M.C.College, Marthandam, Tamil Nadu, India Email[: devaraj_jacob@yahoo.co.in](mailto:devaraj_jacob@yahoo.co.in) ²Research Scholar, Department of Mathematics, N.M.C.College, Marthandam, Tamil Nadu, India Email[: spreshma30@gmail.com](mailto:spreshma30@gmail.com)

Abstract:- **Let G be a (p,q) graph. We define the Vertex Prime Cordial labeling as follows. Let V(G), E(G) denote the vertex set and edge set of G respectively. Consider a** bijection $f : E(G) \rightarrow \{0, 1, 2, \ldots, |E|\}$ such that for **each vertex of degree atleast two and the induced function** f^* **:** $V(G) \rightarrow \{0, 1\}$ is defined by

 $f^*(u) = \begin{cases} 1 \\ 0 \end{cases}$ $\bf{0}$

satisfies the condition $|v_{f}(0) - v_{f}(1)| \le 1$ where

 $V_f(i)$ = number of vertices labeled with i where $i = 0,1$. **In this paper we proved the following graphs are Vertex Prime Cordial labeling.**

*Keywords***: Pyramid graph, Duplicating all the vertices of path, Closed Helm.**

Introduction:

A graph labeling (or) valuation of a graph G is an assignment of labels to the vertices of G that induces for each xy a labels depending on the vertex labels $f(x)$ and $f(y)$. For all terminology and notations we use [5]. In 1987 Cahit [1] introduced a variation of both graceful and harmonious labeling and called such labeling as cordial labeling. In 2005 Sundaram, Ponraj and Somasundarm [6] have introduced the notion of prime cordial labeling. In 2006 Sundaram, and Somasundarm introduced the class of product cordial labeling and total product cordial labeling and studied in detail.

Definition:1.1

A binary vertex labeling f of a graph G is called a **cordial labeling** if $|v_f(0) - v_f(1)| \le 1$ and $|e_f(0) - e_f(1)|$ \leq 1. A graph G is called cordial graph if it admits cordial labeling.

Definition :1.2

A **prime cordial labeling** of a graph G with vertex set $V(G)$ is a bijection

 $f : V(G) \to \{1, 2, 3, \ldots, |V(G)|\}$ and the induced function $f : E(G) \rightarrow \{0, 1\}$ is defined by f^{*} (e = uv) = $\int 1$; if gcd (f(u), f(v)) = 1 0 ; otherwise $\int\limits_{\gamma}$ \lfloor

satisfies the condition $|e_f(0) - e_f(1)| \le 1$. A graph which admits prime cordial labeling is called a prime cordial graph.

In this paper we define the new concept **Vertex Prime Cordial Labeling** of graphs as follows.

Definition:1.3

A **vertex prime cordial labeling** of a graph G with edge set $E(G)$ is a bijection $f : E(G) \rightarrow \{0, 1, 2, \ldots\}$, |E|} such that for each vertex of degree atleast two and the induced function f^* : $V(G) \rightarrow \{0, 1\}$ defined by

$$
f^*(u) = \begin{cases} 1; & \text{if gcd of labels of the edges incident at } u \text{ is } 1 \\ 0; & \text{otherwise} \end{cases}
$$

satisfies the condition $|v_f(0) - v_f(1)| \le 1$ where $v_f(i) =$ number of vertices labelled with i where $i = 0, 1$. A graph which admits vertex prime cordial labeling is called a vertex prime cordial graph.

Theorem:1.1

Cycle graph C_n is a vertex prime cordial graph for all $n \geq 3$.

Proof

Let the vertex set of C_n be $V(C_n) = \{u_i / 1 \le i \le n\}.$ And the edge set of C_n be $E(G) = \{(u_i u_{i+1}) / 1 \le i \le n-1\}$ $\{(u₁u_n)\}$. It has n vertices and n edges.

Define $f: E(C_n) \to \{0, 1, 2, ..., |E|\}$ as follows **Case (i)** Suppose n is even

$$
f(e_i) = f(u_i u_{i+1}) = 2i - 1, \quad 1 \le i \le \frac{n}{2}
$$

}

$$
f(e_i) = f(u_i u_{i+1}) = 2\left(i - \left(\frac{n}{2} + 1\right)\right), \frac{n}{2} + 1 \le i \le n - 1
$$

 $f(e_n) = f(u_1 u_n) = n - 2$ Thus all the edge values are distinct. Now the corresponding vertex labels are

$$
f(u_i) = gcd(f(e_{i-1}), f(e_i)), 1 \le i \le \frac{n}{2}
$$

= gcd(2i - 3, 2i - 1) where i is odd
= gcd(k, k + 2) where k is odd

$$
f^{*}(u_{i}) = gcd(f(e_{i-1}), f(e_{i})), \frac{n}{2} + 1 \le i \le n - 1
$$

= $gcd\{2\left(i - 1 - \left(\frac{n}{2} + 1\right)\right), \left(i - \left(\frac{n}{2} + 1\right)\right)\}$

where i is even

 $= \gcd(k_1, k_1 + 2)$ where k_1 is even $= 0$

Thus
$$
f'(u_i) = 1, 1 \le i \le \frac{n}{2}
$$
 and

$$
f^*(u_i) = 0, \ \frac{n}{2} + 1 \le i \le n
$$

Then $v_f(1) = v_f(0) =$ n 2

Case (ii) Suppose n is odd

$$
f(e_i) = f(u_i u_{i+1}) = 2i - 1, \quad 1 \le i \le \left| \frac{n}{2} \right|
$$

$$
f(e_i) = f(u_i u_{i+1}) = 2 \left(i - \left(\left\lfloor \frac{n}{2} \right\rfloor + 1 \right) \right), \left\lceil \frac{n}{2} \right\rceil + 1 \le i \le n - 1,
$$

$$
f(e_n) = f(u_i u_n) = n - 3
$$

Thus all the edge values are distinct. Now the corresponding vertex labels are

$$
f^*(u_i) = \gcd(f(e_{i-1}), f(e_i)), 1 \le i \le \left\lceil \frac{n}{2} \right\rceil
$$

= $\gcd(2i - 3, 2i - 1)$ where i is odd
= $\gcd(k, k + 2)$ where k is odd
 $f^*(u_i) = \gcd(f(e_{i-1}), f(e_i)), \left\lceil \frac{n}{2} \right\rceil + 1 \le i \le n - 1$

$$
=\gcd\{2\left(i-1-\left(\left\lceil\frac{n}{2}\right\rceil+1\right)\right),2\left(i-\left(\left\lceil\frac{n}{2}\right\rceil+1\right)\right)\}\text{ where }i
$$

is even

$$
f'(u_i) = \gcd(k_1, k_1 + 2)
$$
 where k_1 is even
= 0

Thus
$$
f(u_i) = 1, 1 \le i \le \left\lceil \frac{n}{2} \right\rceil
$$
 and
\n $f(u_i) = 0, \left\lceil \frac{n}{2} \right\rceil + 1 \le i \le n$

Then
$$
v_f(1) = \left[\frac{n}{2} \right]
$$
 and $v_f(0) = \left[\frac{n}{2} \right]$

From the above results we have $|v_f(1) - v_f(0)| \le 1$. Hence C_n is vertex prime cordial graph.

*Illustration***:1**

Fig:1 C¹² is vertex prime cordial graph

C11 is vertex prime cordial graph.

Theorem:1.2

Path graph P_n is a vertex prime cordial graph for all n.

Definition:1.4 (Pyramid Graph)

The graph obtained by arranging vertices into a finite number of rows with i vertices in the i^{th} row and in every row the j^{th} vertex and $j + 1$ st vertex of the next row is called the pyramid. We denote the pyramid with n rows by Py_n .

Theorem:1.3

All pyramids are vertex prime cordial graph.

Proof

Let a_{11} be the unique vertex of the Py_n . Let a_{21} a_{22} be the vertices in the first level with 2 edges. Let a_{31} , a_{32} , a_{33} be the vertices in the second level. Hence a_{3j} , j = 1, 2, 3 be the vertices in the third level with $n = 3$ and with 6 edges. proceeding like this, a_{n1} , a_{n2} , a_{n3} , . . a_{nn} be the vertices in the nth level and the corresponding edges will be $(n - 1)n$. Now the graph Py_n has $\frac{n(n+1)}{2}$ 2 $(v+1)$ vertices and n(n – 1) edges.

Define $f: E(Py_n) \to \{0, 1, 2, \dots |E|\}$ as follows

$$
f(a_{11}a_{21}) = 1
$$

\n
$$
f(a_{11}a_{22}) = 0
$$

\n
$$
f(a_{21}a_{31}) = 3
$$

\n
$$
f(a_{22}a_{33}) = 2
$$

\n
$$
f(a_{31}a_{42}) = 9
$$

\n
$$
f(a_{31}a_{42}) = 9
$$

\n
$$
f(a_{31}a_{42}) = 6
$$

\n
$$
f(a_{32}a_{42}) = 11
$$

\n
$$
f(a_{22}a_{32}) = 5
$$

\n
$$
f(a_{32}a_{43}) = 10
$$

\n
$$
f(a_{33}a_{43}) = 8
$$

Proceeding like this In general

$$
f(a_{ij}a_{(i+1)j}) = 2m + 1, m = 0, 1, 3, 5, 6, 8... \frac{n}{2},
$$

\n
$$
1 \le i \le n, 1 \le j \le \left\lceil \frac{n}{2} \right\rceil
$$

\n
$$
f(a_{ij}a_{(i+1)(j+1)}) = 2m + 1, m = 2, 4, 7, ... \frac{n}{2}, 1 \le i \le n,
$$

\n
$$
1 \le j \le \left\lceil \frac{n}{2} \right\rceil
$$

\n
$$
f(a_{ij}a_{(i+1)(j)}) = 2m, m = 2, 4, 7, 9... \frac{n}{2}, 1 \le i \le n - 1,
$$

\n
$$
2 \le j \le \left\lfloor \frac{n}{2} \right\rfloor
$$

\n
$$
f(a_{ij}a_{(i+1)(j+2)}) = 2m, m = 0, 1, 3, 5, 6, 8... \frac{n}{2},
$$

\n
$$
1 \le i \le n - 1, 2 \le j \le \left\lfloor \frac{n}{2} \right\rfloor.
$$

Then the vertex labels are

values are
$f(a_{ij}) = \begin{cases} 1, & \text{if } 1 \leq j \leq \left\lceil \frac{n}{2} \right\rceil \\ 0, & \text{if } \left\lfloor \frac{n}{2} \right\rfloor \leq j \leq n \end{cases}$

Case (i) Suppose n is even

$$
v_f(1) - v_f(0) = \frac{n}{2} .
$$

Case (ii) Suppose n is odd

$$
v_f(1) = \left\lceil \frac{n}{2} \right\rceil
$$
 and $v_f(0) = \left\lfloor \frac{n}{2} \right\rfloor$.

From above result we get $|v_{f}(1) - v_{f}(0)| \leq 1$, which satisfy the condition of vertex prime cordial graph.

Hence Py_n is vertex prime cordial graph.

We now prove in particular for the vertices \mathbf{a}_{32} and \mathbf{a}_{43} as follows

$$
f(a_{32}) = \gcd\{f(a_{21}a_{32}), f(a_{22}a_{32}), f(a_{32}a_{42}), f(a_{32}a_{43})\}
$$

= gcd{3,4,11,10}
= 1

$$
f(a_{43}) = \gcd\{f(a_{32}a_{43}), f(a_{33}a_{43}), f(a_{43}a_{53}), f(a_{43}a_{54})\}
$$

= gcd{10,8,18,16}
= 0 and so on.

Illustration:2

Fig: 2 Py 9 is vertex prime cordial graph. *Theorem:1.4*

The graph obtained by duplicating all the vertices by edges in path P n is vertex prime cordial graph.

Proof

Let v_1, v_2, \ldots, v_n be the vertices and

 $e_1, e_2, \ldots, e_{n-1}$ be edges of path P_n .

Let the graph obtained by duplicating all the vertices by edges in path P_n is G. Let the edge so added corresponding to vertex v_n has end vertices v_n' and v_n'' .

Let the vertex set of
$$
V(G) = \{v_i / 1 \le i \le n\}
$$
\n $\bigcup \{v_i' / 1 \le i \le n\} \cup \{v_i'' / 1 \le i \le n\}$

and the edge set of be $E(G) = \{ v_i v_{i+1} / 1 \le i \le n - 1 \}$

$$
\begin{aligned} &\cup \{v_i'v_i''\text{ / }1\leq i\leq n\text{ }\}\cup \{v_iv_i'\text{ / }1\leq i\leq n\text{ }\}\\ &\cup \{v_iv_i''\text{ / }1\leq i\leq n\text{ }\}.\end{aligned}
$$

Note that the graph obtained by duplicating all the vertices by edges in path P_n has 3n vertices and 4n - 1 edges.

Define $f : E(G) \rightarrow \{0, 1, 2, ..., |E|\}$ as follows

$$
f(v_i v_i') = 6(i-1) + 1, 1 \le i \le \left\lceil \frac{n}{2} \right\rceil
$$

\n
$$
f(v_i v_i'') = 6(i-1) + 5, 1 \le i \le \left\lfloor \frac{n}{2} \right\rfloor
$$

\n
$$
f(v_i v_i'') = 6(i-1) + 3, 1 \le i \le \left\lfloor \frac{n}{2} \right\rfloor
$$

\n
$$
f(v_i v_i') = 6\left(i - \left\lfloor \frac{n}{2} \right\rfloor\right), \left\lfloor \frac{n}{2} \right\rfloor \le i \le n
$$

\n
$$
f(v_i v_i'') = 6\left(i - \left\lceil \frac{n}{2} \right\rceil\right) + 4, \left\lceil \frac{n}{2} \right\rceil \le i \le n
$$

\n
$$
f(v_i' v_i'') = 6\left(i - \left\lceil \frac{n}{2} \right\rceil\right) + 2, \left\lceil \frac{n}{2} \right\rceil \le i \le n
$$

\n
$$
f(v_i v_{i+1}) = 3n + 2(i-1), 1 \le i \le \left\lfloor \frac{n}{2} \right\rfloor, n \text{ is odd}
$$

\n
$$
f(v_i v_{i+1}) = 3n + 1 + 2(i-1), 1 \le i \le \frac{n}{2} - 1,
$$

\n
$$
n \text{ is even}
$$

\n
$$
f(v_iv_{i+1}) = 3n + 1 + 2\left(i - \left(\left\lfloor \frac{n}{2} \right\rfloor + 1\right)\right),
$$

\n
$$
\left\lfloor \frac{n}{2} \right\rfloor + 1 \le i \le n - 1, n \text{ is odd}
$$

\n
$$
f(v_iv_{i+1}) = 3n + 2\left(i - \frac{n}{2}\right), \frac{n}{2} \le i \le n - 1,
$$

\n
$$
n \text{ is even}
$$

Then the vertex labels are as follows

Case (i) When n is odd

$$
f'(v_i) = 1, \t 1 \le i \le \left\lceil \frac{n}{2} \right\rceil
$$

$$
f'(v_i) = 0, \t \left\lceil \frac{n}{2} \right\rceil + 1 \le i \le n
$$

$$
f'(v_i') = 1, \t 1 \le i \le \left\lfloor \frac{n}{2} \right\rfloor
$$

$$
f'(v'_i) = 0, \qquad \left\lfloor \frac{n}{2} \right\rfloor + 1 \le i \le n
$$

$$
f'(v''_i) = 1, \qquad 1 \le i \le \left\lceil \frac{n}{2} \right\rceil
$$

$$
f'(v''_i) = 0, \qquad \left\lceil \frac{n}{2} \right\rceil + 1 \le i \le n.
$$

In view of the above labeling pattern we have

$$
v_{f}(1) = \left\lceil \frac{n}{2} \right\rceil \text{ and } v_{f}(0) = \left\lfloor \frac{n}{2} \right\rfloor.
$$

Case (ii) When n is even

$$
f'(v_i) = 1, \t 1 \le i \le \frac{n}{2}
$$

$$
f'(v_i) = 0, \t \frac{n}{2} + 1 \le i \le n
$$

$$
f'(v_i') = 1, \t 1 \le i \le \frac{n}{2}
$$

$$
f'(v_i') = 0, \frac{n}{2} + 1 \le i \le n
$$

$$
f'(v_i'') = 1, \t 1 \le i \le \frac{n}{2}
$$

$$
f'(v_i'') = 0, \t \frac{n}{2} + 1 \le i \le n
$$

.

In view of the above labeling pattern

we have $v_f(1) = v_f(0) = \frac{n}{n}$

2 Then from the case 1 and case 2

we have $|v_{f}(1) - v_{f}(0)| \le 1$.

Hence duplicating all the vertices by edges in path P_n is vertex prime cordial graph.

*Illustration***:3**

Fig: 3 The graph obtained by duplicating all the vertices by edges in path P⁵ is vertex prime cordial graph

Illustration:4

Fig: 4 The graph obtained by duplicating all the vertices by edges in path P⁶ is vertex prime cordial graph.

*Definition***:1.5**

The closed helm CH_n is the graph obtained from a helm H_{n} by joining each pendent vertex to form a cycle.

Theorem **: 1.5**

Closed hem CH_n is a vertex prime cordial graph.

Proof

Let v be the apex vertex v_1, v_2, \ldots, v_n be the vertices of inner cycle and $, u_2, \ldots, u_n$ be the vertices of outer cyle CH_n .

Let the vertex set be $V(CH_n) = \{ v_i / 1 \le i \le n \}$ $\cup \{ u_{i} / 1 \le i \le n \} \cup \{ v \}$ and the edge set be $E(CH_n) = \{ vv_i / 1 \le i \le n \}$ $\bigcup \{v_i v_{i+1}^{\dagger} / 1 \leq i \leq n-1\} \bigcup \{v_i v_n\}$ $\cup \{v_i u / 1 \le i \le n\}$ ${u_i u_{i+1} / 1 \le i \le n-1} \cup {u_i u_n}$.

Note that the graph CH_n has $2n + 1$ vertices and 4n edges. Now define $f : E(G) \rightarrow \{0, 1, 2, \dots, |E|\}$ as follows **Case (i)** If n is odd

$$
f(vv_i) = 2i - 1, \quad 1 \le i \le \left\lceil \frac{n}{2} \right\rceil
$$

\n
$$
f(vv_i) = 2\left(i - \left(\left\lceil \frac{n}{2} \right\rceil + 1\right)\right), \quad 1 \le i \le \left\lceil \frac{n}{2} \right\rceil + 1
$$

\n
$$
f(v_iv_{i+1}) = n + 2i, \quad 1 \le i \le \left\lfloor \frac{n}{2} \right\rfloor
$$

\n
$$
f(v_iv_{i+1}) = n - 1 + 2\left(i - \left(\left\lfloor \frac{n}{2} \right\rfloor + 1\right)\right),
$$

\n
$$
\left\lfloor \frac{n}{2} \right\rfloor + 1 \le i \le n
$$

\n
$$
f(v_iu_i) = 2n + 1 + 2(i - 1), \quad 1 \le i \le \left\lceil \frac{n}{2} \right\rceil
$$

$$
f(v_i u_i) = 2n + 2\left(i - \left(\left\lceil \frac{n}{2} \right\rceil + 1\right)\right),
$$

$$
\left[\frac{n}{2}\right] + 1 \le i \le n
$$

$$
f(u_i u_{i+1}) = 3n + 2 + 2(i - 1), 1 \le i \le \left\lceil \frac{n}{2} \right\rceil
$$

$$
f(u_i u_{i+1}) = 3n - 1 + 2\left(i - \left(\left\lceil \frac{n}{2} \right\rceil + 1\right)\right),
$$

$$
\left\lceil \frac{n}{2} \right\rceil + 1 \le i \le n.
$$

Then the vertex labels corresponding to the edges are as follows.

$$
f'(v) = 0
$$

\n
$$
f'(v_i) = 1, \t 1 \le i \le \boxed{\frac{n}{2}}
$$

\n
$$
f'(v_i) = 0, \t \boxed{\frac{n}{2} + 1 \le i \le n}
$$

\n
$$
f'(u_i) = 1, \t 1 \le i \le \boxed{\frac{n}{2}}
$$

\n
$$
f'(u_i) = 0, \t \boxed{\frac{n}{2} + 1 \le i \le n}
$$

.

In view of the above labeling pattern we have

$$
v_{f}(1) = \left[\frac{n}{2}\right], v_{f}(0) = \left[\frac{n}{2}\right]
$$

Case (ii) If n is even

Case (ii) If n is even

f(vv_i) = 2i-1,
$$
1 \le i \le \frac{n}{2}
$$

\nf(vv_i) = 2\left(i - (\frac{n}{2} + 1)\right), $\frac{n}{2} + 1 \le i \le n$
\nf(vv_iv_{i+1}) = n+1+(i-1), $1 \le i \le \frac{n}{2}$
\nf(vv_iv_{i+1}) = n+2\left(i - (\frac{n}{2} + 1)\right),
\n $\frac{n}{2} + 1 \le i \le n-1$
\nf(v_iv_i) = 2n-2
\nf(v_iu_i) = 2n-1+ 2(i-1), $1 \le i \le \frac{n}{2}$

$$
f(v_i u_i) = 2n + 2\left(i - \left(\frac{n}{2} + 1\right)\right), \quad \frac{n}{2} + 1 \le i \le n
$$

$$
f(u_i u_{i+1}) = 3n - 1 + 2(i - 1), \quad 1 \le i \le \frac{n}{2}
$$

$$
f(u_i u_{i+1}) = 3n + 2\left(i - \left(\frac{n}{2} + 1\right)\right),
$$

$$
\frac{n}{2} + 1 \le i \le n
$$

 $f(u_i u_n) = 4n - 2$

Then the vertex labels are as follows

*

f (v) = 0
\nf (v_i) = 1,
$$
1 \le i \le \frac{n}{2}
$$

\nf (v_i) = 0, $\frac{n}{2} + 1 \le i \le n$
\nf (u_i) = 1, $1 \le i \le \frac{n}{2} + 1$
\nf (u_i) = 0, $\frac{n}{2} + 2 \le i \le n$.

In view of the above labeling pattern

we have $v_f(1) = \left[\frac{n}{n} \right]$ 2 $|n|$ $\left\lceil \frac{n}{2} \right\rceil$ $v_f(0) = \left\lfloor \frac{n}{2} \right\rfloor$ 2 $|n|$ $\left\lfloor \frac{n}{2} \right\rfloor$.

Thus from case
$$
1
$$
 and case 2 we have

 $| v_f(1) - v_f(0) | \le 1$, which satisfy the condition of vertex prime cordial graph. Hence CH_n is a vertex prime cordial graph.

Illustration:6

Fig: 6 CH⁹ is a vertex prime cordial graph.

REFERENCES

- [1] Cahit. I., Cordial graph: A Weaker Version of Graceful and Harmonious Graphs, Ars. Combi, 23 (1987) 201 – 120.
- [2] J.Devaraj and S.P.Reshma., On Vertex Prime Graph, International J. of Math. Sci. & Engg. Appls. (IJMSEA)*,* ISSN 0973-9424, Vol. 7 No. VI.
- [3] J.Devaraj and S.P.Reshma., Vertex Prime Labelling on Planar Graphs and Cycle Related Graphs, Bulletin of pure and Applied Sciences, Vol.33 E,1(2014) 29-43.
- [4] J.Devaraj and S.P.Reshma., On Strongly Product Difference Quotient Graph, International Journal of Advanced and Innovative Research, ISSN 2278-7844, Volume No.04, Issue No.04, April-2015.
- [5] Harrary.F, Graph Theory, Narosa Publishing House, New Delhi (1993).
- [6] Sundaram.M., Ponraj.R. and Somasundaram.S. ,Prime Cordial Labeling of Graphs, J.Indian Acad.Math, 27(2005) 373 – 390.