
Study of Tools for Managing Changing User

Requirement for Software Development
1
Pooja,

2
Kamna Solanki

1, Research Scholar, M.D.University, Rohtak
2Assistant Professor, M.D.University, Rohtak

Abstract: Requirement change management is very

critical and the most important aspect in the software

development. User Requirements keep on Changing

during all the stages of software development. Hence,

there must be some effective techniques to tackle

these changing user requirements. Basically, change

is a transition from current way of working to

another looked-for way and this nature of the change

coupled with complexity of services create problems.

This paper depicts the main hurdles in the change

management like dependability, traceability etc. and

efficient tools to cope these changes so that it would

not affect the stability. Ultimate aim is to propose a

framework to manage this important trait in the

process of software development.

Keyword: Framework, changing requirements,

requirements management.

1. INTRODUCTION

Software is usually developed following a specific

method that has some defined phases, which it goes

through. Most methods have phases for analysis,

design, test and implementation, after that product

is released and enters the final phase of

maintenance. The maintenance phase can be

thought of as mini cycles of the main development

phases where a new requirement (or a bug) requires

a little additional analysis, a small change to the

design, modifications to the implementation and

updated test cases. All the products of the main

cycle (specifications, design, code, test cases) are

affected by changes in the maintenance phase and

hence it is very important that products should be

made with maintainability in mind and that Change

management is able to follow changes through all

phases.

Changing requirements have been considered as a

challenging area of research by the software

engineering community [1]. It has been observed

that requirements change during different phases of

software development life cycle (SDLC) [2] and

this change plays a vital role in success or failure of

any project [3]. The fact is that more than half of

the system’s requirements will change before the

actual deployment of the system [4]. Most of the

software failures are attributed to poor

requirements engineering in which ambiguous and

incomplete requirements lead to changes

throughout the SDLC [5]. In recent years the trend

has changed from blaming the problem towards

identifying the cause of that problem [6]. There is

considerable overlap and confusion between

change management, change control and

configuration management. The definition below

does not yet integrate these areas. Change

management has been embraced for its ability to

deliver benefits by improving the affected system

and thereby satisfying "customer needs," but has

also been criticized for its potential to confuse and

needlessly complicate change administration. In

some cases, notably in the Information Technology

domain, more funds and work are put into system

maintenance (and change management) than into

the initial creation of a system. Typical investment

by organizations during initial implementation of

large ERP systems is 15 to 20 percent of overall

budget [7].

Change management is also of great importance in

the field of manufacturing, which is confronted

with many changes due to increasing and

worldwide competition, technological advances

and demanding customers.

Because many systems

tend to change and evolve as they are used, the

problems of these industries are experienced to

some degree in many others. Requirements

management is the process of documenting,

analyzing, tracing, prioritizing and agreeing on

requirements and then controlling change and

communicating to relevant stakeholders. It is a

continuous process throughout a project [8]. A

requirement is a capability to which a project

outcome (product or service) should conform. The

purpose of requirements management is to ensure

that an organization documents, verifies, and meets

the needs and expectations of its customers and

internal or external stakeholders.

Requirements management begins with the analysis

and elicitation of the objectives and constraints of

the organization [9]. Requirements management

further includes supporting planning for

requirements, integrating requirements and the

organization for working with them (attributes for

requirements), as well as relationships with other

information delivering against requirements, and

changes for these. The traceability thus established

is used in managing requirements to report back

fulfilment of company and stakeholder interests in

terms of compliance, completeness, coverage, and

consistency. Traceability also support change

management as part of requirements management

International Journal of Advanced and Innovative Research (2278-7844) / # 142 / Volume 5 Issue 7

 © 2016 IJAIR. All Rights Reserved 142

https://en.wikipedia.org/wiki/Competition

in understanding the impacts of changes through

requirements or other related elements (e.g.,

functional impacts through relations to functional

architecture), and facilitating introducing these

changes.

Requirements management involves

communication between the project team members

and stakeholders, and adjustment to requirements

changes throughout the course of the project.

To

prevent one class of requirements from overriding

another, constant communication among members

of the development team is critical. For example, in

software development for internal applications, the

business has such strong needs that it may ignore

user requirements, or believe that in creating use

cases, the user requirements are being taken care

of.

2.RELATED WORK

In a systematic review, the main research

questions, the methodological steps, and the study

retrieval strategies are explicitly defined. In 2004,

the procedures for performing a Systematic

Literature Review (SLR) in Software Engineering

were first proposed by Kitchenham [12]. In the

software engineering research literature, there are a

few examples of reviews on agile methods:

(Jeffery and Paech, 2002) presented literature

review on various requirements engineering

process models that exist in literature. With the

help of qualitative questionnaire a structured

interview was conducted. The data obtained from

the interview was discussed with respect to

requirements engineering process at two Australian

companies and an illustrative requirement

engineering process model was constructed and

compared with three existing requirements

engineering process models [7].

(Kontio et al, 2004) identified some critical factors

that affect organizations requirements engineering

processes and indicated that organizations can gain

benefit by basic RE practices as well as human

factors such as motivation, commitment and

enthusiasm [8].

 (Li Jiang, 2005) proposed a Framework for

Requirements Engineering Process Development.

Developed model is used to build an appropriate

RE process model and RE techniques for software

project[9].(Ikram et al, 2006) presented a critical

study of goal oriented requirement engineering

techniques(GORE) that provide an incremental

approach for elicitation, analysis, elaboration,

refinement, specification and modeling of

requirements. They evaluated the underlying

concepts, process and advantages of GORE with

respect to requirement engineering activities [10].

(Atlee et al, 2007) outlined the aspects of RE

research with respect to requirements technologies.

It also identified numerous research challenges

along with research areas that call for further

investigation [11]. (Aftab, 2008) explored

requirements modelling in agile framework. The

paper highlighted on just-in-time requirements in

agile development. The framework had three main

phases. First phase involve Initial Envisioning

(Functionality Analysis, User Story Analysis,

Architectural Analysis) while second phase is

Proof of Concept Modeling Through TDD(Test

Driven development) and last is Reviews. It proof

that by using TDD in requirements analysis

significantly reduces project risk and development

time [13].

(Hasnain , 2010) conducted a systematic literature

review to identify the agile practices as well as the

human and technical factors pointed out in agile

studies, published within 2003–2007. The review

revealed that agile RE practices had only been

discussed in the literature from the overall

perspective of agile methods and not in the context

of any particular methods such as Scrum, test-

driven development, etc. Hasnain’s findings

suggest that more empirical results are required on

agile methods, in particular XP (Extreme

Programming) (Beck, 1999) and Scrum (Schwaber

& Beedle, 2001), in order to discuss the details

from the practitioner’s point of view [15].

(Silva et al, 2011) conducted a systematic literature

review on the topic of the integration of agile

methods and usercentred design approaches. The

review focused on usability issues in agile methods

with respect to design. The findings show that

usability issues in agile methods can be addressed

by incorporating a user centred design specialist

(UCDS) role in agile teams. The authors also

defined practices to resolve usability issues in agile

methods such as Little Design Up Front, Big

Design Up Front, low fidelity prototypes, user

testing, interaction models, and close

collaboration[20].

(Helmy et al, 2012)described in detail about

architecture related issues in agile requirements

engineering process and proposed methodology to

guide and assist practitioners adopting agile

requirements engineering in the complete

development process [21]. (Rizvi, 2013) conducted

a systematic literature review on distributed agile

software development. The review aimed to study

the way in which organisations adopted distributed

agile software development. In addition, the review

focused on the challenges and their solutions from

2007 to 2012. Rizvi’s findings revealed

communication, collaboration, coordination and

cultural differences as major challenges of

distributed agile development. The review also

emphasised the importance of having an

International Journal of Advanced and Innovative Research (2278-7844) / # 143 / Volume 5 Issue 7

 © 2016 IJAIR. All Rights Reserved 143

https://en.wikipedia.org/wiki/Use_cases
https://en.wikipedia.org/wiki/Use_cases

infrastructure for communication and collaboration

to address the identified challenges [22].

(Minhas et al , 2014) improved framework for

requirement change management in global software

development (RCM_GSD) has been presented. The

objective is to manage the change in requirement

specifically in global software development in an

appropriate manner. The proposed framework

RCM_GSD follows the required processes of RCM

and reduces the concerns of GSD. Systematic

Literature Review (SLR) was conducted for

exploration of relevant research [23].

3. TOOLS ASSESSMENT:

In general, a tool is a process that designed to

achieve a specific purpose, especially if the item is

not consumed in the process . There are different

tools, frameworks and models available in the

market and can be classified into a certain number

of categories in order to assess and identify their

weaknesses and strengths. Many project developers

used these tools to manage their software change

requirements management. However, these tools

are consisting of a variety of processes. Some of

these tools are commercial off-the-shelf software

applications such as RequireIt, RequisitePro,

DOORS, RTM SLATE, Ultra-lightweight and

Lightweight.

TOOLS Strengths Weakness

Borland CaliberRM Borland is a tool used to manage

requirements . It can be divided

into two important points: Caliber

Define IT, which stands as

software requirement at the first

stage of the project. Second point

is traceability links, it stores by

checking which artifact are linked

and its direction.

As defined, CaliberRM tool can

be supported only traceability

approach for controlling

requirements management and

change request. The change can be

traced only via traceability links.

There are no change

implementation and verification

process.

Heavyweight (IBM Rational

Requisite pro)

RequisitePro is software change

and requirement management tool

which is under IBM’s Rationale

Suite .It supports to model

software change and store them in

a relational database.

Unfortunately, heavyweight tools

are complex, inflexible and costly.

Normally, tools with a lot of

features are complex because it

needs to train the staff very high

cost and takes time to understand

and how to perform impact

analysis and how to use it as well.

RTM (Integrated chipware) RTM (Requirements and

Traceability Management) from

Integrated Chipware is a software

change and requirement control

tool designed to support a large

integrated software project

development.

RTM does not help object-

oriented properties. More

specifically, when the project

becomes complex it difficult to

trace backward.

RequireIt (Telelogic AB) RequireIt is a software change and

Requirements Management tool,

which is based entirely on MS-

Word. This tool designed for

novice users. it gives change to

the users to utilize its existing,

Familiar interface .

RequireIt tool limits to get change

history and identification of a past

change request approaches.

Further, it ignores database

administration to keep the project

requirement in a traceable way.

DOORS AND DOORSNET

(TELELOGIC AB)

DOORS, is a software change

requirement management tool that

designed to use bi-directional

traceability. It also allows to

change impact analysis.

This tool Provides only a single-

database repository . As DOORS

tool user views, the tool

configuration management does

not support with high project

requirements churn i.e. If for

example, 70% of the project

requirements in a database change

in a short period of time.

Table 1: Assessment of a Change requirement management tools

International Journal of Advanced and Innovative Research (2278-7844) / # 144 / Volume 5 Issue 7

 © 2016 IJAIR. All Rights Reserved 144

4. ASSESSMENT OF EXISTING MODELS

In this context, process model, defines what we are

going to do (activities), who will be accountable

(role) and what it should be (the input and output)

[15]. These are known as the items or elements of

the model [16]. These elements are the constructs

of all models, which we have integrated set a

framework [17]. Mostly, different researchers have

provided several items and there is no consensus

for their items [17], [18] but when we look such as

activities, roles and artifacts which are mostly

discussed in the literature. In the following Table 1

shows activities, artifacts and roles/actors.

RCM Model

Activities

Olsen’s Model V like Model Ince’s Model Sprial Model

Change impact

functionality

 YES

Change

implemention

YES YES YES

Update documeent YES

verification YES

Problem

understanding

 YES YES

Solution analysis YES YES

Solution

specification

 YES YES

Regration testing YES

Table 2: Existing activities in a most software change management model from literature

In V-like model [17], planning the resource on the

change control is missing, as whenever there is a

change request, it is necessary to estimate the effect

of the change to allocate the required cost for

implementation, this kind of change is practically

possible. Further, impact analysis activity has not

been discussed in this model; this activity is used to

identify the impact of the change.

Ince's Model [17] totally ignored the type of

decisions to be taken, who will decide the change,

what is the strategy for the change and what should

be the process of having decision, what kind of

details is needed to have proper decision and how

the change will look like?. Limited artifacts were

discussed and still the content of the artifacts

mentioned are not enough [19]. However, in this

mode, decision making activity is missing and it is

difficult to know whether the related requirements

are needed to update in future or not and process of

what approach should be used for the change

implementation. There are no testing activities

discussed in this model to verify and validated

changes.

spiral shaped model for the management req.

[24]Change. That comprises 4 cycles or steps. In

very 1
st
 round; few alterations are asked as adding

new features or fixes of bugs in the existing

system. Risk analysis is important phase so

requires expert people. It is not beneficial for

smaller projects. Spiral may go infinitely.

Documentation is more as it has intermediate

phases. It is costly for smaller projects[25].

In Olsen Model the changes requested by users are

managed by the change manager in change

management phase. Once the changes have been

accepted, they are sent to the implementation stage.

Requested changes are implemented at

International Journal of Advanced and Innovative Research (2278-7844) / # 145 / Volume 5 Issue 7

 © 2016 IJAIR. All Rights Reserved 145

implementation stage. With the help of testing

changes can be verified. Once changes have been

verified, change mangers are informed to release

new changes in the software. The change is

highlighted as a basic element of life cycle of a

software development, in change model[26] . On

the other hand activities which are required to

manage change are not considered in this model.

5. FUTURE SCOPE

As the Requirement change is of most importance.

Most of the project fails due to the inefficient

change managements. Although the studies have

been conducted, but still a lot has to be done to

handle these changes effectively, the area of

change management lacks research. There is a still

lack of some efficient enough and effective

framework, to handle these consecutive changing

requirements during all phases of SDLC.

Therefore, we strongly recommend to study further

effective techniques to handle changes and

identifying and evaluating the causes of

requirements change and their relationship with

each other to propose an efficient enough

framework to handle requirement changes, as they

are considered to be an impact factor for the

success or failure of software projects.

CONCLUSION

This study set out to explore, classify and compare

the causes of requirements change during software

development. The major contributions of this thesis

are a formal framework for the effective

management of changing software requirements

and new methods for treating completeness and

handling inconsistency in evolving models of

requirements. This research thus offers a rigorous

approach to reasoning about requirements

evolution and an important starting point for

defining semantically well-founded methods and

tools for the effective management of changing

software requirements.

REFERENCES
[1] M. G. Christel and K. C. Kang, “Issues in

Requirements Elicitation”, Software Engineering

Institute, Carnegie Mellon University, Pittsburgh,

Pennsylvania, Technical Report CMU/SEI-92-TR-012,

1992.

[2] R. J. Costello and D. B. Liu, “Metrics for

requirements engineering,” Journal of Systems and

Software, vol. 29, no. 1, pp. 39-63, April 1995.

[3] B. Curtis, H. Krasner, and N. Iscoe, “A field study of

the software design process for large systems,”

Communications of the ACM, vol. 31, no. 11, pp. 1268-

1287, November 1988.

[4] B. H. C. Cheng and J. M. Atlee, “Research directions

in requirements engineering,” Future of Software

Engineering, pp. 285-303, 2007.

[5] J. V. Buren and D. A. Cook, “Experiences in the

adoption of requirements engineering technologies,”

Journal of Defense Software Engineering, pp. 3-10,

1998.

[6] B. W. Boehm, “Software Engineering Economics”,

Upper Saddle River, NJ: Prentice Hall PTR, ch. 28, pp.

484-485, 1981.

[7] S. Martin, A. Aurum, R. Jeffery and B. Paech,

“Requirements Engineering Process Models in Practice”,

The Seventh Australian Workshop on Requirements

Engineering: proceedings AWRE ,Deakin University,

School of Information Systems, Deakin University

Melbourne, Victoria, 2002.

[8] M. Kauppinen, M. Vartiainen, J. Kontio, S. Kujala

and R. Sulonen, “Implementing requirements

engineering processes throughout organizations: success

factors and challenges”, lsevier (Science direct)

Information and Software Technology volume- 46, issue

14, pp 937–953, 2004.

[9] L. Jiang, “A Framework For The Requirements

Engineering Process Development”, Phd. Thesis

Department Of Electrical And Computer Engineering

Calgary, Alberta August, 2005.

[10] S.Anwer And N. Ikram, “Goal Oriented

Requirement Engineering”, A Critical Study Of

Techniques, Xiii Asia Pacific Software ngineering

Conference (Apsec'06), IEEE, 2006.

[11] H.C. Betty, M. Joanne, Atlee, “Research Directions

in Requirements Engineering”, IEEE,2007.

[12] B.Kitchenham, “Procedures for undertaking

Systematic Reviews”, Joint Technical Report,Computer

Science Department, Keele University (TR/SE-0401) and

National ICT Australia Ltd (0400011T.1), July 2007.

[13] T. Aftab, “Requirement Modeling In Agile

Framework”, EPHLAX, White paper, October, 2008.

[14]B. J. Williams, J. Carver, and R. Vaughn, “Change

Risk Assessment: Understanding Risks Involved in

Changing Software Requirements,” in Proc.

International Conference on Software Engineering

Research and Practice, Las Vegas, Nevada , 2006.

[15] E. Hasnain, “An overview of published agile

studies”, A systematic literature review. In Proceedings

of the national software engineering conference (pp. 1–

6), 2010.

[16]L. Luigi and G. Valetto,. “Enhancing requirements

and change management through process modelling and

measurement”. Requirements Engineering, Proceedings.

4th International Conference on. IEEE, 2000.

 [17] L. Hattori., D. Guerrero, J. Figueiredo, J. Brunet

and J. Damasio, “On the Precision and Accuracy of

Impact Analysis Techniques”, in 7th IEEE/ACIS

International Conference on Computer and Information

Science, Portland, Oregon, USA, IEEE Computer

Society, 2008.

[18] F. Peter, S .Watts, “Software process development

and enactment, Concepts and definitions. Software

Process, Continuous Software Process Improvement,”

Second International Conference on the. IEEE, 2010.

 [19] B. Nejmeh and W. Riddle, “Concepts for process

definition and support, Software Process Workshop,

Support for the Software Process”, Proceedings of the 6th

International. IEEE, 1990.

 [20]S. Silva, T. Martin, A. Maurer and M. Silveira ,

“User-centered design and agile methods” . A systematic

review. In Agil. Conf, (pp. 77–86), 2011.

 [21] W. Helmy, A. Kamel and O. Hegazy,

“Requirements Engineering Methodology in Agile

Environment”,International Journal of Computer

Science Issues, Vol. 9, Issue 5, No 3, 2012.

International Journal of Advanced and Innovative Research (2278-7844) / # 146 / Volume 5 Issue 7

 © 2016 IJAIR. All Rights Reserved 146

[22]B. Rizvi , “A systematic review of distributed agile

software engineering”. Alberta: Athabasca

University,2013.

[23] N. Minhas, Q. Ain, Z. Islam and A. Zulfiqar, “An

Improved Framework for Requirement Change

Management in Global Software Development”, Journal

of Software Engineering and Applications, 7, 779-790,

2014.

[24]G. Kotonya and I. Sommerville, “Requirements

Engineering: Processes and Techniques”. Chichester,

UK: John Wiley and Sons , 1998.

[25]S. Ferreira, J. Collofello, D. Shunk, and G.

Mackulak, “Understanding the effects of requirements

volatility in software engineering by using analytical

modeling and software process simulation,” Journal of

Systems and Software , vol. 82, no. 10, pp. 1568-1577,

2009.

[26]D. Zowghi and N. Nurmuliani, “A study of the

impact of requirements volatility on software project

performance,” in Software Engineering Conference,

Ninth Asia-Pacific , 2002, pp. 3-11, 2002.

International Journal of Advanced and Innovative Research (2278-7844) / # 147 / Volume 5 Issue 7

 © 2016 IJAIR. All Rights Reserved 147

