On Vertex Polynomial of Comb and Crown

E. Ebin Raja Merly^{#1}, A. M. Anto^{*2} ¹Assistant Professor in Mathematics, Nesamony Memorial Christian College, Marthandam, India. ebinmerly@gmail.com

²Research scholar in Mathematics, Nesamony Memorial Christian College, Marthandam, India.

antoalexam@gmail.com

Abstract - Let G = (V, E) be a graph. The vertex polynomial of $\mathbf{V}(\mathbf{G},\mathbf{x}) = \sum_{k=0}^{\Delta(\mathbf{G})} \mathbf{v}_k \mathbf{x}^k,$ the graph G = (V, E) is defined as where $\Delta(G) = \max\{d(v)/v \in V\}$ and v_k is the number of vertices of degree k. In this paper we seek to find the vertex polynomial of Comb, Crown and some other Graphs.

Keywords- Comb, Crown, Vertex Polynomial, Union, Sum.

1. INTRODUCTION

In a graph G = (V, E), we mean a finite undirected, non-trivial graph without loops and multiple edges. The vertex set is denoted by V and the edge set by E. For $v \in V$, d(v) is the number of edges incident with v, the maximum degree of Gis defined as $\Delta(G) = \max\{d(v)/v \in V\}$. For terms not defined here, we refer to Frank Harary[6]. The graph G = (V, E) is simply denoted by G. Let G₁ and G₂be two graphs, the union $G_1 \cup G_2$ is defined to be (V, E) where $V = V_1 \cup V_2$ and E = $E_1 \cup E_2,$ the sum $G_1 + G_2$ is defined as $G_1 \cup G_2$ together with all the lines joining points of V_1 to V_2 . The graph obtained by joining a single pendent edge to each vertex of a path is called Comb. Any cycle with pendant edge attached to each vertex is called Crown.

2. VERTEX POLYNOMIAL OF COMB, THEIR UNION AND THEIR SUM.

Definition:2.1

The graph obtained by joining a single pendent edge to each vertex of a path is called Comb.

Theorem: 2.2

Let G be a Comb with order 2n, $(n \ge 2)$. The vertex polynomial of G is

$$V(G, x) = (n - 2)x^3 + 2x^2 + nx, n \ge 2.$$

Proof:

Let G be a Comb with order 2n, $(n \ge 2)$. By Comb definition, n vertices are pendent vertices, among remaining n vertices n - 2 have degree 3 and 2 vertices have degree 2.

Example: 2.3

Take n = 3 in the above theorem. We have the graph

Here, $V(G, x) = x^3 + 2x^2 + 3x$.

Theorem: 2.4

Let G be a Comb with order 2n, $(n \ge 2)$. The vertex polynomial of $\zeta = G \cup G \cup \dots \cup G$ (*m times*) is

$$V(G, x) = m(n-2)x^3 + 2mx^2 + mnx, n \ge 2.$$

Proof:

Let G be a Comb with order 2n, $(n \ge 2)$. Consider m copies of G. Since, G has order $2n, (n \ge 2)$ we have m copies of G has order 2mn, $(n \ge 2)$. In m copies of G, mn vertices are pendent vertices, 2m vertices having degree 2, m(n-2) vertices have degree 3 gives the required result.

Theorem: 2.5

Let G be a Comb with order 2n, $(n \ge 2)$. The vertex polynomial of *mG* is

 $V(G, x) = m(n-2)x^{3+2n(m-1)} + 2mx^{2+2n(m-1)} +$ $mnx^{2n(m-1)}, n \ge 2.$

Proof:

Using definition of sum of graphs, degree of each vertex in ζ is increased by 2n(m-1) in mG gives the required result.

3. VERTEX POLYNOMIAL OF CROWN ($C_N \odot K_1$), THEIR UNION AND THEIR SUM.

Definition: 3.1

Any cycle with pendant edge attached to each vertex is called Crown.

Theorem: 3.2

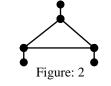
Let G be a Crown with order 2n. Then the vertex polynomial of G is given by $V(G, x) = nx^3 + nx, n \ge 3$.

Proof:

Let G be a Crown with order 2n, $(n \ge 3)$. By Crown definition, *n* vertices are pendant vertices; remaining n vertices have degree 3 gives the required result.

Example: 3.3

Take n = 3 in the above theorem. We have the graph,



Here, $V(G, x) = 3x^3 + 3x$.

Theorem: 3.4

Let G be a Crown with order $2n, (n \ge 3)$. The vertex polynomial of $\zeta = G \cup G \cup ... \cup G$ (*m times*) is

$$V(G, x) = mnx^3 + mnx, n \ge 3$$

Proof:

Let G be a Crown with order $2n, (n \ge 3)$. Consider m copies of G. Since, G has order $2n, (n \ge 3)$ we have m copies of G has order 2mn, $(n \ge 3)$. In m copies of G, mn vertices are pendent vertices, mn vertices having degree 3 gives the required result.

Theorem: 3.5

Let G be a Crown with order 2n, $(n \ge 3)$. The vertex polynomial of mG is given by

$$V(G, x) = mnx^{3+2n(m-1)} + mnx^{1+2n(m-1)}, \ n \ge 3.$$

Proof:

Using definition of sum of graphs, degree of each vertex in $\zeta = G \cup G \cup \dots \cup G$ (*m times*) is increased by 2n(m-1)in mG gives the required result.

4. Vertex Polynomial of $P_N \odot \overline{K}_M$, (N ≥ 2), their union AND THEIR SUM

Theorem: 4.1

Let G be $P_n \odot \overline{K}_m$. Then the vertex polynomial of G is given by

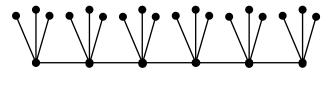
 $V(G, x) = (n - 2)x^{m+2} + 2x^{m+1} + nmx, n \ge 2.$

Proof:

Let G be $P_n \odot \overline{K}_m$. We can observe that, n-2 vertices have degree m + 2, 2 vertices have degree m + 1 and nmvertices have degree 1 shows the required result.

Example: 4.2

Consider the Graph $P_6 \odot \overline{K}_3$. Then the corresponding graph is illustrated as follows;



Here, $V(G, x) = 4x^5 + 2x^4 + 18x$.

Results: 4.3

- Let G be $P_n \odot \overline{K}_m$. Then the vertex polynomial (i) of $\zeta = G \cup G \cup ... \cup G$ (k times) is given by $V(G, x) = k(n-2)x^{m+2} + 2kx^{m+1} +$ $knmx, n \ge 2$.
- Let G be $P_n \odot \overline{K}_m$. Then the vertex polynomial (ii) of kG is given by

$$V(G, x) = k(n-2)x^{(m+2)+n(k-1)(m+1)} + 2kx^{(m+1)+n(k-1)(m+1)} + knmx^{n(k-1)(m+1)}, n \ge 2.$$

5. Vertex Polynomial of $C_N \odot \overline{K}_M$, (N \ge 3), their union AND THEIR SUM

Theorem: 5.1

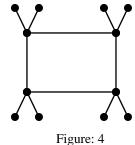
Let G be $C_n \odot \overline{K}_m$, $(n \ge 3)$. Then the vertex polynomial of G is given by $V(G, x) = nx^{m+2} + nmx, \ n \ge 3.$

Proof:

Let G be $C_n \odot \overline{K}_m$. We can observe that, n vertices have degree m + 2 and nm vertices have degree 1 shows the required result.

Example: 5.2

Consider the Graph $C_4 \odot \overline{K}_2$. Then the corresponding graph is depicted as follows;



Here, $V(G, x) = 4x^4 + 8x$.

Results: 5.3

- Let G be $C_n \odot \overline{K}_m$, $(n \ge 3)$. Then the vertex (i) polynomial of $\zeta = G \cup G \cup ... \cup G$ (k times) is given by $V(G, x) = knx^{m+2} + knmx$.
- Let G be $C_n \odot \overline{K}_m$, $(n \ge 3)$. Then the vertex (ii) polynomial of kG is given by V(G, x) = $knx^{(m+2)+n(k-1)(1+m)} + knmx^{n(k-1)(1+m)}$.

6. Vertex Polynomial of $L_N \odot \overline{K}_M$, (N ≥ 2), their union AND THEIR SUM

Theorem: 6.1

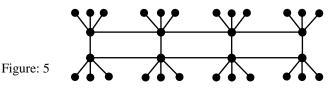
Let *G* be $L_n \odot \overline{K}_m$, $(n \ge 2)$. Then the vertex polynomial of G is given by $V(G, x) = (2n - 4)x^{m+3} + 4x^{m+2} + 2nmx.$

Proof:

Let G be $L_n \odot \overline{K}_m$, $(n \ge 2)$. We can observe that, 2n-4 vertices have degree m+3, 4 vertices have degree m + 2 and 2nm vertices have degree 1 gives the required result.

Example: 6.2

Consider the Graph $L_4 \odot \overline{K}_3$. Then the corresponding graph is depicted as follows;



Here, $V(G, x) = 4x^6 + 4x^5 + 24x$.

Results: 6.3

- (i) Let G be $L_n \odot \overline{K}_m$, $(n \ge 2)$. Then the vertex polynomial of $\zeta = G \cup G \cup ... \cup G$ (*k times*) is $V(G, x) = k(2n - 4)x^{m+3} +$ given by $4kx^{m+2} + 2knmx$.
- Let G be $P_n \odot \overline{K}_m$, $(n \ge 2)$. Then the vertex (ii) polynomial of kG is given by V(G, x)

$$= k(2n-4)x^{(m+3)+2n(1+m)(k-1)} + 4kx^{(m+2)+2n(1+m)(k-1)} + 2knmx^{2n(1+m)(k-1)}.$$

7. Vertex Polynomial of $C_N \odot K_2$, (N ≥ 3), their union and their sum.

Theorem: 7.1

Let *G* be $C_n \odot K_2$, $(n \ge 3)$. Then the vertex polynomial of *G* is given by $K(G, n) = nn^4 + 2nn^2, n \ge 2$

 $V(G, x) = nx^4 + 2nx^2, \ n \ge 3.$

Proof:

Let G be $C_n \odot K_2$, $(n \ge 3)$. We can observe that, n vertices have degree 4 and 2n vertices have degree 2 shows the required result.

Example: 7.2

Consider the Graph $C_4 \odot K_2$. Then the corresponding graph is depicted as follows;

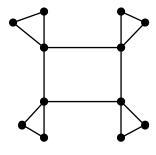


Figure: 6

Here, $V(G, x) = 4x^4 + 8x^2$.

Results: 7.3

(i) Let G be $C_n \odot K_2$, $(n \ge 3)$. Then the vertex polynomial of $\zeta = G \cup G \cup ... \cup G$ (k times) is given by $V(G, x) = knx^4 + 2knx^2$.

(ii) Let G be $C_n \odot K_2$, $(n \ge 3)$. Then the vertex polynomial of kG is given by

$$V(G,x) = knx^{4+3n(k-1)} + 2knx^{2+3n(k-1)}$$

8. Vertex Polynomial of $P_N \odot K_2$, (N ≥ 2), their union and their sum.

Theorem: 8.1

Let G be $P_n \odot K_2$, $(n \ge 2)$. Then the vertex polynomial of G is given by

 $V(G, x) = (n - 2)x^4 + 2x^3 + 2nx^2, \ n \ge 2.$

Proof:

Let *G* be $P_n \odot K_2$, $(n \ge 2)$. We can observe that, n - 2 vertices have degree 4, 2 vertices have degree 3 and 2n vertices have degree 2 shows the required result.

Example: 8.2

Consider the Graph $P_6 \odot K_2$. Then the corresponding graph is illustrated as follows;

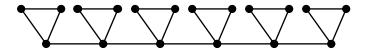


Figure: 7

Here,
$$V(G, x) = 4x^4 + 2x^3 + 12x^2$$
.

Results: 8.3

- (i) Let G be $P_n \odot K_2$, $(n \ge 2)$. Then the vertex polynomial of $\zeta = G \cup G \cup ... \cup G$ (k times) is given by $V(G, x) = k(n-2)x^4 + 2kx^3 + 2knx^2$.
- (ii) Let G be $P_n \odot K_2$, $(n \ge 2)$. Then the vertex polynomial of kG is given by V(G, x) = $k(n-2)x^{4+3n(k-1)} + 2kx^{3+3n(k-1)} +$ $2knx^{2+3n(k-1)}$.

REFERENCES

[1] E. Ebin Raja Merly, E.Giftin Vedha Merly, A.M.Anto, "Degree Sequence and Clique number of Bi- Factograph and Tri-Factograph", IJMTT-Volume 21-May 2015, pp 28-32.

[2] E. Ebin Raja Merly, E.Giftin Vedha Merly, A.M.Anto, "On Integral Perfect Factograph and Integral Bi-Factograph" IJMA-6(8), 2015, 47-50.

[3] E. Giftin Vedha Merly and N. Gnanadhas, "On Factograph", International Journal of Mathematics Research, Volume 4, Number 2(2012), pp 125-131.

[4] E. Giftin Vedha Merly and N. Gnanadhas, "*Some more Results on Facto Graphs*", International Journal of Mathematical Analysis, Volume 6, 2012, No.50, pp 2483-2492.

[5] "*Elementary Number Theory*" – David. M.Burton University of New Hampshire.

[6] Frank Harary, 1872,"*Graph Theory*", Addition – Wesly Publishing Company.

[7] Gary Chartrant and Ping Zank, "*Introduction to Graph Theory*", TATA McGRAW-HILL EDITION.

[8] J.Devaraj, E.Sukumaran "On Vertex Polynomial", International
J. of Math.sci & Engg Appls(IJMESA) Vol. 6 No. 1 (January, 2012), pp. 371-380.

[9] J.A.Gallian, 2010, A dynamic Survey of graph labeling. The electronic Journal of Combinatories 17#DS6.

[10] J.W.Archbold, "Algebra", LONDON SIR ISSAC PITMAN and SONS LTD".

[11] Zhiba Chen, "Integral Sum Graphs from Identification", Discrete Math 181 (1998), 77-90.