
Analyze the Cooperative Spectrum Sensing in 

Cognitive Radio Networks  
G.Sudhagar Govindhaswamy 

Assistant professor, Faculty of Electrical and computer Engineering, 

Bahir dar Institute of Technology, Bahir Dar, Ethiopia. 

sudhagarambur@gmail.com 

 

 

 
Abstract-The cognitive radio is a network to alleviate 

spectrum scarcity; cognitive radios (CRs) have 

attracted intensive research attention recently. While 

great strides have been made in spectrum sensing 

techniques in cognitive radio networks, these 

approaches are susceptible to unconventional attacks 

that may result in catastrophic performance 

degradation of the spectrum usage efficiency. For 

example, primary user emulation, intelligent jamming 

and denial of service for spectrum usage may impact 

the performance of classical spectrum sensing 

approaches. A sensing quality metric is defined as a 

measure of the correctness of spectral availability 

information based on the fact that spectrum sensing 

information at a given space and time can represent 

spectrum information at a different point in space 

and time. A distributed Selective-(CORN)2 (S-

(CORN)2) is introduced by extending the distributed 

algorithm to allow secondary users toselect 

collaboration neighbours’ in densely populated 

cognitive radio networks. Challenges associated with 

spectrum sensing are given and enabling spectrum 

sensing methods are reviewed. The paper explains the 

cooperative sensing concept and its various forms. 

External sensing algorithms and other alternative 

sensing methods are discussed. 

Keywords:(CORN)2,WSN,Spectrum sensing and 

sharing in cooperative networks, scheduling. 

 

I. INTRODUCTION 

Cognitive radio (CR) is the enabling technology 

that allows unlicensed secondary users (SUs) to 

exploit idle licensed frequency bands, forming thus 

a cognitive radio network (CRN). CRs can 

autonomously adjust their transmission parameters 

and modify their behaviour based on the 

electromagnetic environment conditions. Spectrum 

sensing is a key phase in the operation cycle of a 

CR [1], leveraging the radio’s ability to measure, 

sense and be aware of the channel characteristics. It 

can be performed either individually or 

cooperatively in order to detect idle frequencies, 

referred to as spectrum holes, and minimize 

interference to the licensed or primary user (PU)  

activities [2]. The accuracy on detecting spectrum 

holes determines the efficiency of exploiting the 

spectrum. Thus, either sensing errors related to 

hardware outages [3], [4] or susceptibility to 

specialized attacks on the sensing functionality can 

result in significant performance degradation. 

Existing works on security in CR mainly address 

concerns of designs for cryptography, intrusion 

detection system and authentication. However, 

these security measures are not sufficient to 

preserve the correctness of spectrum sensing results 

against attacks and intrusions [4]. Preventive 

security mechanisms, as cryptography, provide 

confidentiality, integrity and authentication, but 

they are inefficient against data injection overload, 

interception, manipulation or impersonation 

attacks, such as Denial of Services (DoS), PU 

emulation (PUE) attacks and jamming. Reactive 

security mechanisms, as intrusion detection 

systems (IDS), are based on network behaviour 

analysis, or previously known attack patterns, being 

inflexible to handle unpredictable misbehaviours. 

Furthermore, since new communication 

technologies are more dynamic and adaptive, 

attacks are also becoming smarter, often bypassing 

common security mechanisms [4]. This paper 

presents a cooperative spectrum sensing framework 

to effectively provide resilience against both faults 

and attacks. Applying a low-cost multi-criteria 

analysis technique, the framework is adaptable to 

radio environment and flexible to consider 

unpredictable behaviours that emerge from various 

practical deployment scenarios. Also, it is able to 

handle multi-dimensional (e.g. frequency, time, 

geographical space, security) data in order to 

effectively sense the spectrum, and detect or 

mitigate faults and attacks in an optimal way. In the 

framework, CRs share their initial estimation of the 

likelihood of an attack with neighbors to gather a 

collective perception of the network. Thus, they 

apply the non-parametric Bayesian inference 

technique to classify spectrum holes and indicate 

the ones that are least susceptible to failures and 

attacks, being then resilient in the sense that nodes 

do not simply rely on majority voting by a 

collection of nearby nodes. Our approach is 

evaluated under network disconnections and PUE 

attacks, considering different sets of physical layer 

features and their corresponding thresholds that 

indicate a deviation from the expected results. 

Simulation results, founded on real traces, show the 

benefit of the proposed framework in terms of 

attack detection and its adaptation to network 

conditions. 
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Fig.1.1 A typical collaborate spectrum sensing in 

cognitive radio network. 

 

One of the most important challenges in cognitive 

radio is reliable spectrum sensing. It has attracted 

far-reaching attention recently. Spectrum sensing 

procedure can be accomplished individually or 

cooperatively. If spectrum sensing procedure is 

used by cooperative decision, it could be more 

reliable because there might happen something to 

several users and they couldn’t sense the spectrum 

well and their local decisions don’t be true. 

 

II.  ((CORN)2) ALGORITHM 

The present literature for spectrum sensing is still 

in its early stages of development. A number of 

different methods are proposed for identifying the 

presence of signal transmissions. In some 

approaches, characteristics of the identified 

transmission are detected for deciding the signal 

transmission as well as identifying the signal type. 

In this section, some of the most common spectrum 

sensing techniques in the cognitive radio literature 

is explained. The CRN from the perspective of 

individual SUs and their requirements of sensing 

quality. Accordingly, we develop a provably 

arbitrarily close to optimal sensing scheduling 

algorithm through a novel sensing deficiency 

virtual queue concept and introduce its distributed 

implementation. 

 

A. Energy Detector Based Sensing  

Energy detector based approach, also known as 

radiometry or period gram, is the most common 

way of spectrum sensing because of its low 

computational and implementation complexities. In 

addition, it is more generic (as compared to 

methods given in this section) as receivers do not 

need any knowledge on the primary users’ signal. 

The signal is detected by comparing the output of 

the energy detector with a threshold which depends 

on the noise floor [64]. Some of the challenges with 

energy detector based sensing include selection of 

the threshold for detecting primary users, inability 

to differentiate interference from primary users and 

noise, and poor performance under low signal-to-

noise ratio (SNR) values [48]. Moreover, energy 

detectors do not work efficiently for detecting 

spread spectrum signals [26], [59]. Let us assume 

that the received signal has the following simple 

form  

y(n) = s(n) + w(n) (1) 

where,  

s(n) is the signal to be detected,  

w(n) is the additive white Gaussian noise 

(AWGN) sample, and  

n is the sample index.  

 

Note that s(n)=0 when there is no transmission 

by primary user. The decision metric for the energy 

detector can be written as  

M = N n=0 |y(n)| 2 ,  (2) 

where N is the size of the observation vector. 

The decision on the occupancy of a band can be 

obtained by comparing the decision metric M 

against a fixed threshold λE. This is equivalent to 

distinguishing between the following two 

hypotheses:  

H0 : y(n) = w(n),  (3) 

H1 : y(n) = s(n) + w(n). (4) 

The performance of the detection algorithm 

can be summarized with two probabilities: 

probability of detection PD and probability of false 

alarm PF . PD is the probability of detecting a 

signal on the considered frequency when it truly is 

present. Thus, a large detection probability is 

desired. It can be formulated as  

PD = Pr (M>λE |H1).  (5) 

PF is the probability that the test incorrectly 

decides that the considered frequency is occupied 

when it actually is not, and it can be written as 

PF = Pr (M>λE|H0).  (6)  

PF should be kept as small as possible in order 

to prevent underutilization of transmission 

opportunities. The decision threshold λE can be 

selected for finding an optimum balance between 

PD and PF . However, this requires knowledge of 

noise and detected signal powers. The noise power 

can be estimated, but the signal power is difficult to 

estimate as it changes depending on going 

transmission characteristics and the distance 

between the cognitive radio and primary user. In 

practice, the threshold is chosen to obtain a certain 

false alarm rate [65]. Hence, knowledge of noise 

variance is sufficient for selection of a threshold. 

The white noise can be modelled as a zero-mean 

Gaussian random variable with variance σ2 w, i.e. 

w(n) = N (0, σ2 w). For a simplified analysis, let us 

model the signal term as a zero-mean Gaussian 

variable as well, i.e. s(n) = N (0, σ2 s ). The model 

for s(n) is more complicated as fading should also 

be considered. Because of these assumptions, the 

decision metric (2) follows chi-square distribution 

with 2N degrees of freedom χ2 2N and hence, it 

can be modelled as  

M = σ2 w 2 χ2 2N H0, σ2 w+σ2 s 2 χ2 2N H1. (7) 
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B. Waveform-Based Sensing  

Known patterns are usually utilized in wireless 

systems to assist synchronization or for other 

purposes. Such patterns include preambles, 

midambles, regularly transmitted pilot patterns, 

spreading sequences etc. A preamble is a known 

sequence transmitted before each burst and a 

midamble is transmitted in the middle of a burst or 

slot. In the presence of a known pattern, sensing 

can be performed by correlating the received signal 

with a known copy of itself [48], [58], [63]. This 

method is only applicable to systems with known 

signal patterns, and it is termed as waveform-based 

sensing or coherent sensing. In [48], it is shown 

that wave form based sensing outperforms energy 

detector based sensing in reliability and 

convergence time. Furthermore, it is shown that the 

performance of the sensing algorithm increases as 

the length of the known signal pattern increases. 

Using the same model given in (1), the waveform-

based sensing metric can be obtained. 

The decision on the presence of a primary user 

signal can be made by comparing the decision 

metric M against a fixed threshold λW . For 

analyzing the WLAN channel usage characteristics, 

packet preambles of IEEE 802.11b [71] signals are 

exploited in [55], [56]. Measurement results 

presented in [25] show that waveform-based 

sensing requires short measurement time; however, 

it is susceptible to synchronization errors. Uplink 

packet preambles are exploited for detecting 

Worldwide Interoperability for Microwave Access 

(WiMAX) signals. 

C. Cyclostationarity-Based Sensing 

Cyclostationarity feature detection is a method 

for detecting primary user transmissions by 

exploiting the cyclostationarity features of the 

received signals. Cyclostationary features are 

caused by the periodicity in the signal or in its 

statistics like mean and autocorrelation [80] or they 

can be intentionally induced to assist spectrum 

sensing. Instead of power spectral density (PSD), 

cyclic correlation function is used for detecting 

signals present in a given spectrum. The 

cyclostationarity based detection algorithms can 

differentiate noise from primary users’ signals. 

This is a result of the fact that noise is wide-sense 

stationary (WSS) with no correlation while 

modulated signals are cyclostationary with spectral 

correlation due to the redundancy of signal 

periodicities [74]. Furthermore, cyclostationarity 

can be used for distinguishing among different 

types of transmissions and primary users. 

D. Radio Identification Based Sensing  

A complete knowledge about the spectrum 

characteristics can be obtained by identifying the 

transmission technologies used by primary users. 

Such an identification enables cognitive radio with 

a higher dimensional knowledge as well as 

providing higher accuracy [59]. For example, 

assume that a primary user’s technology is 

identified as a Bluetooth signal. Cognitive radio 

can use this information for extracting some useful 

information in space dimension as the range of 

Bluetooth signal is known to be around 10 meters. 

Furthermore, cognitive radio may want to 

communicate with the identified communication 

systems in some applications. For radio 

identification, feature extraction and classification 

techniques are used in the context of European 

transparent ubiquitous terminal (TRUST) project 

[86]. The goal is to identify the presence of some 

known transmission technologies and achieve 

communication through them. The two main tasks 

are initial mode identification (IMI) and alternative 

mode monitoring (AMM). In IMI, the cognitive 

device searches for a possible transmission mode 

(network) following the power on. AMM is the 

task of monitoring other modes while the cognitive 

device is communicating in a certain mode. 

E. Matched-Filtering  

Matched-filtering is known as the optimum 

method for detection of primary users when the 

transmitted signal is known [91]. The main 

advantage of matched filtering is the short time to 

achieve a certain probability of false alarm or 

probability of miss detection [92] as compared to 

other methods that are discussed in this section. In 

fact, the required number of samples grows as 

O(1/SNR) for a target probability of false alarm at 

low SNRs for matched- filtering [92]. However, 

matched-filtering requires cognitive radio to 

demodulate received signals. Hence, it requires 

perfect knowledge of the primary users signalling 

features such as bandwidth, operating frequency, 

modulation type and order, pulse shaping, and 

frame format. 

F. Other Sensing Methods  

Other alternative spectrum sensing methods 

include multitaper spectral estimation, wavelet 

transform based estimation, Hough transform, and 

time-frequency analysis. Multitaper spectrum 

estimation is proposed in [93]. The proposed 

algorithm is shown to be an approximation to 

maximum likelihood PSD estimator, and for 

wideband signals, it is nearly optimal. Although the 

complexity of this method is smaller than the 

maximum likelihood estimator, it is still 

computationally demanding. Random Hough 

transform of received signal is used in [94] for 

identifying the presence of radar pulses in the 
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operating channels of IEEE 802.11 systems. 

 
Fig.1.2 Main sensing methods in terms of 

their sensing accuracies and complexities. 

 

This method can be used to detect any type of 

signal with a periodic pattern as well. Statistical 

covariance of noise and signal are known to be 

different. This fact is used in [95] to develop 

algorithms for identifying the existence of a 

communication signal. Proposed methods are 

shown to be effective to detect digital television 

(DTV) signals. 

 

III. COGNITIVE RADIO NETWORK 

A cognitive radio is an 

intelligent radio that can be programmed and 

configured dynamically. Its transceiver is designed 

to use the best wireless channels in its vicinity. 

Such a radio automatically detects available 

channels in wireless spectrum, then accordingly 

changes its transmission or reception parameters to 

allow more concurrent wireless communications in 

a given spectrum band at one location. This process 

is a form of dynamic spectrum management. 

 
Fig.1.3 CR Network((CORN)2) 

 

The main functions of cognitive radios are: 

Power Control: Power control is used for both 

opportunistic spectrum access and spectrum 

sharing CR systems for finding the cut-off level in 

SNR supporting the channel allocation and 

imposing interference power constraints for the 

primary user's protection respectively. 

Spectrum sensing: Detecting unused spectrum and 

sharing it, without harmful interference to other 

users; an important requirement of the cognitive-

radio network to sense empty spectrum. Detecting 

primary users is the most efficient way to detect 

empty spectrum. Spectrum-sensing techniques may 

be grouped into three categories: 

Transmitter detection: Cognitive radios must have 

the capability to determine if a signal from a 

primary transmitter is locally present in a certain 

spectrum. There are several proposed approaches to 

transmitter detection: 

Energy detection: Energy detection is a spectrum 

sensing method that detects the presence/absence of 

a signal just by measuring the received signal 

power.  This signal detection approach is quite easy 

and convenient for practical implementation. To 

implement energy detector, however, perfect noise 

variance information is required. And surprisingly 

when there is noise uncertainty, there is 

an SNR wall below which the energy detector 

cannot reliably detect any transmitted signal. In  a 

new energy based spectrum sensing algorithm with 

noise variance uncertainty is proposed. This 

algorithm does not suffer from SNR wall and 

outperforms the existing signal detectors (see for 

example and its USRP implementation ). And most 

importantly, the relationship between the energy 

detector of and that of is quantified analytically. 

Also when the noise variance is known perfectly 

these two energy detectors achieve the same 

probability of detection and false alarm rates. 

Cooperative detection: Refers to spectrum-sensing 

methods where information from multiple 

cognitive-radio users is incorporated for primary-

user detection. 

Null-space based CR: With the aid of multiple 

antennas, CR detects the null-space of the primary-

user and then transmit within this null-space, such 

that its subsequent transmission causes less 

interference to the primary-user 

Spectrum management: Capturing the best 

available spectrum to meet user communication 

requirements, while not creating undue interference 

to other (primary) users. Cognitive radios should 

decide on the best spectrum band (of all bands 

available) to meet quality of service requirements; 

therefore, spectrum-management functions are 

required for cognitive radios. Spectrum-

management functions are classified as: 

 Spectrum analysis 

 Spectrum decision 

 

IV. SPATIAL-CORRELATION BASED 

SENSINGSCHEDULING 

ALGORITHMS 

We compare (CORN)2 with respect to a 

spatial-correlation-based cooperative sensing 

algorithm, where we do not require a minimum 

sensing rate constraint (i.e.,RS= 0). Different from 

(CORN)2, the spatial-correlation based algorithm is 

developed to minimize the energy consumption 

employing spatial correlations only.3 Specifically, 

the centralized spatial-correlation-based algorithm. 
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Fig.1.4 Performance of CORN 

 

Under the above spatial-correlation-based 

algorithm, at each time slot t, if an SU is scheduled 

to sense a channel, it will broadcast its sensing data 

to its neighbour. However, an SU i does not utilize 

its neighbour SU j’s sensing data if SU j is not 

scheduled to perform sensing at the current time 

slot t (i.e., if μj,c(t) = 0), as is captured by the 

constraint (24). That is, under this algorithm a node 

does not utilize any sensing information before the 

current timeslot (either from its local sensing 

history or its neighbour’s broadcasted data in the 

past). Hence, this algorithm optimizes the total 

energy consumption only based on the current 

spatial correlations. 

 

V. CONCLUSION 

In this paper, a new cooperative spectrum 

sensing for cognitive radio based on S-(CORN)2 

algorithm was proposed. In our proposed scheme 

the weights of secondary users were updated in 

time and finally the sensing results were combined 

in the fusion centre based on their trusted weights. 

The developed algorithm and its variants are 

theoretically shown to minimize the sensing cost 

and stabilizing all queues in the network, which in 

turn guarantees desired sensing quality levels.  
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