

Efficient Packet Forwarding Using Static Routing in SDN

M. Krithika
1,
 M. Nithya

2

1PG Scholar, Department of CSE, Anna University Regional Campus, Coimbatore
2PG Scholar, Department of CSE, Anna University Regional Campus, Coimbatore

E-mail: krithikalilly2@gmail.com,nithisri92@gmail.com

Abstract: Software Defined Networks (SDN) is a new

networking paradigm in which the control plane is

decoupled from switch. SDN is a radical new idea in

networking promises to dramatically simplify network

management and enable innovation and evolution. The

network intelligence of a SDN is logically centralized (at

the control plane) in software based controllers, and

network nodes become simple packet forwarding devices

(the data plane) that can be programmed via an open

interface (Open Flow). This paper explains the system

forwarding the packets between client and web server

using static routing in software defined networks. A SDN

router will receive raw Ethernet frames. It will process the

packets, and then it will forward them to the correct

outgoing interface. The system is simulated using Mininet

simulator. The results show that packet forwarding using

static routing in SDN minimizes the cost and time varies

depends upon the usage when compared with traditional

networking.

Keywords: SDN, OpenFlow, Mininet, NOX, POX.

I. INTRODUCTION

Software Defined Networks (SDN) promises to

simplify network management and enable innovation

through network program ability. SDN has two defining

characteristics. SDN separates the control plane from

the data plane, and then the control plane is

consolidated by SDN, so that the multiple data-plane

elements are controlled using single software control

program. The SDN control plane directs the control

over the network’s data-plane nodes such as switches,

routers, and middle boxes, which are connected through

Application Programming Interface. OpenFlow is a

prominent example of such an API.

Fig 1: SDN data plane and Control plane

A. SDN Network

The SDN architecture is composed by separating the

control plane from the data plane devices which

provides a programmable interface for the separated

control plane. The forwarding rules are received to the

data-plane devices from the separated control plane and

those rules are applied to the hardware ASICs.

B. Software Defined Networks (SDN) Architecture

SDN architecture encompasses the complete network

platform. The bottom layer of SDN (e.g. Fig 2) involves

the network nodes such as Ethernet switches and routers

which enables the data plane. The middle layer consists

of the controllers that facilitate the paths in the network.

The controllers use capacity and demand information

which obtained from the networking nodes via the

traffic flows. An application programming interface

(API) used to link the middle layer with the bottom

layer. East and westbound APIs operates based on the

Connections between controllers. The northbound API

is defined through controller application interface.

Fig 2: SDN Architecture

The operation and management of the network are

represented using Functional applications such as

energy-efficient networking, security monitoring, and

access control.

C. Working Principle of SDN

Working of SDN (e.g. Fig 3) explains that, (Step 1) the

packet of a new flow arrives at the switch from the

sender, (Step 2) the switch checks for a flow rule in the

SDN cache. If a packet is matched with flow table it

will update counter, execute packet/match fields, action

set, and metadata. (Step 5) Packets are forwarded to the

receiver. If the packet does not match with the flow

table, the packet will be forwarded to the controller over

a secure channel (Step 3). Using the southbound API

(e.g., OpenFlow, ForCES, PCEP), the SDN controller

can add, drop, and update the data flow entries. The

International Journal of Advanced and Innovative Research (2278-7844) / # 147 / Volume 5 Issue 1

 © 2015 IJAIR. All Rights Reserved 147

controller executes the routing algorithm, and adds a

new forwarding entry to the flow table in the switch and

to each of the relevant switches along the flow path

(Step 4).The switch then forwards the packet to the

corresponding port to send the packet to the receiver

(Step 5).

Fig 3: Working Principle of SDN

II. OPENFLOW

OpenFlow is the fundamental element for building SDN

solutions. In Traditional switch/router, the packet

forwarding done at the data plane and the routing

decisions are done at the control plane occur on the

same device. An OpenFlow Switch decouples the data

plane and control plane functions. The data plane parts

still reside on the switch, while routing decisions are

placed to a separate controller which is a standard

server. The OpenFlow protocol is used for

communication between the OpenFlow Switch and

Controller, which show the messages such as send-

packet out, packet-received, Modify-forwarding-table.

The data plane of an OpenFlow Switch gives flow entry

which contains a packet fields to match and a defined

action. When an OpenFlow Switch receives a packet, if

it has no matching flow entries, it forwards this packet

to the controller. The controller takes a decision on

packets to handle it effectively such as it can drop the

packet, or it can add/delete a flow entry directing the

switch and then it forward similar packets in the future.

A. OpenFlow Network

OpenFlow technology is a set of networks elements and

an own protocol to configure the behavior and the

actions of a network.

.

Fig 4: OpenFlow Network

An OpenFlow network is formed by OpenFlow-

switches which contain a Flow-table which consists of

flow entries of the packets and what are the actions to

be performed, the controller is used for adding and

deleting flow entries. The secure channel interconnects

the switch, controller and OpenFlow protocol for

signaling the whole architecture.

B. OpenFlow Switch

OpenFlow switch consists of 2 types of switches. One is

the hardware based commercial switches that use the

TCAM and the OS of the switch/router for

implementing the Flow-table and the OpenFlow

protocol. The another type is the software-based

switches that use UNIX/LINUX OS system to

implement the entire OpenFlow switch functions.

Fig 5: OpenFlow switch Architecture

International Journal of Advanced and Innovative Research (2278-7844) / # 148 / Volume 5 Issue 1

 © 2015 IJAIR. All Rights Reserved 148

An Open Flow Switch mainly acted based on the

following 3 parts.

 Flow table

 Secure channel

 Open flow protocol

Where,

Flow Table with its action for each every flow entry,

which tells the switch, how to process the flow.

Secure channel allows the commands and packets

which to be sent between a controller and the switch

using the open flow protocol.

The OpenFlow Protocol, which provides a standard way

for a controller to communicate with a switch.

C. Flow-Table

The Flow-table of the OpenFlow switch defined by

three field table.

 A packet header: It defines the flow.

 The action: It defines how the packet is

processed.

 Statistics: It will maintain the buffer which

contains the number of packets and bytes for

each every flow, and the time in the view of

last packet matched the flow.

Fig 6: OpenFlow Table Fields

D. Controller

The Controller is the OpenFlow network element that is

the responsible for managing the OpenFlow switches.

The controller can be a device that only adds and

removes flow-entries statically or a sophisticated device

that can dynamically add and remove flow-entries

depending on different pre-configured conditions.

The OpenFlow provides a simple controller to manage

switches. Sometimes it uses controller like NOX

controller, which is compatible with the OpenFlow

protocol.

E. OpenFlow Secure Channel

OpenFlow switch connects the controller through

secure channel and controller configures and manages

the switch, then the controller collects actions from the

switch, and moves the packet to the switch. OpenFlow

protocol formats the secure channel messages and

Secure Channel is encrypted using SSL. An OpenFlow

Switch consists of one or more new tables and a group

table. The table performs the packet lookups and

forwarding. The controller manages the switch via the

OpenFlow protocol. OpenFlow allows switches to

segment traffic into flows using rules Configured in a

particular switching table called flow table.

Fig 7: OpenFlow switch packet forwarding

III. PACKET FORWARDING

A. Switching and Routing

Switching and Routing are two methods to forward

packets. The difference between them is the OSI level

at which they perform the forwarding. Switching/

Bridging is done at layer 2 of OSI while Routing is

performed at layer 3 of OSI.

B. Switching

Ethernet switching is performed at Data Link Layer of

the OSI stack. This means that link layer controls the

data flow, handles errors at transmissions, and manages

the physical addressing. Media Access Control (MAC)

sub layer and Logical Link Control (LLC) sub layer are

the 2 sub layers of the OSI which is classified via

Ethernet. The MAC sub layer permits and orchestrates

media access, during the LLC sub layer handles flow

control, framing, error control, and MAC layer

addressing.

C. Routing

The Network Layer of OSI performs the IP routing. The

Network Layer forwards the packet between the source

and destination (i.e.,) end- to-end delivery. The packet

delivery of the network layer allows the routing through

International Journal of Advanced and Innovative Research (2278-7844) / # 149 / Volume 5 Issue 1

 © 2015 IJAIR. All Rights Reserved 149

intermediate hosts. Data Link Layer of OSI does the

node-to-node frame delivery, (i.e.,) hop-to-hop frame

delivery on the same link. The Network Layer gives the

functional variable length data sequences between the

source and the destination host using networks, during

the QOS maintenance and error control functions. The

function of Network Layers such as Logical

Addressing, Datagram Encapsulation, Error Handling,

Routing, Fragmentation and Reassembly.

IV. POX CONTROLLER

POX is a python based SDN OpenFlow controller. POX

is rapidly used than NOX because POX provides huge

development in prototyping. OpenFlow switch is

interacted through POX framework. POX is used to

build the emerging applications on Software Defined

Networking, which is used for prototype distribution,

controller design, network virtualization, SDN

debugging, and programming models. The goal of POX

is to develop a modern SDN controller.

Fig 8: POX Controller

A. POX Components

1) Forwarding.layer2_learning

OpenFlow switches act as a type of Layer2 learning

switch, which operates like a NOX's "pyswitch", but

the implementation is little different. This component

learns Layer2 addresses, it flows the exact-matches on

as many fields as possible. For instance, different TCP

connections will result in different flows being

installed.

2) Forwarding.layer2_pairs

Unlike layer2_learning, layer2_pairs installs rules based

purely on MAC addresses.

3) Forwarding.layer3_learning

Layer3_learning does not care about IP stuff like

subnets; it just learns where IP addresses. But hosts

usually care about that stuff. Some special cases such

as, if a host has a set of gateway, host communicates

with that subnet using gateway.

4) OpenFlow.spanning_tree

Spanning tree uses the discovery component to build a

network topology, which constructs a spanning tree,

and it disables flooding on switch ports which are not

on the tree. The topologies with loops no longer turn the

network into useless hot packet soup. It does not have

much of a relationship to Spanning Tree Protocol. The

spanning tree component has two options which alter

the start-up behavior:

 No-flood: This disables the flooding on all

ports as soon as a switch connects.

 Hold-down: It prevents flood control alternates

until a complete discovery cycle has

completed.

B. Working of POX

Flow entry of a switch matches the incoming packet;

the switch updates the counters and applies the

corresponding actions. If the packet does not match

with the flow entry in switch, it simply forwarded it to a

POX controller. The POX controller chooses the

packets which are received from certain (e.g., DNS)

protocols.

NOX applications use these flow-initiations and

forwarded traffic for

 Construct the network view

 Determine whether to forward and control

traffic.

V. CONCLUSION

SDN with static routing forwarding enhances cost

efficient solutions. Static routing is used to establish the

connection between client and server with the help of

POX controller.

REFERENCES
[1] Marc Mendonca, Bruno Astuto A. Nunes, Xuan-Nam

Nguyen, Katia Obraczka, Thierry Turletti “A Survey of

Software-Defined Networking: Past, Present,and Future of

Programmable Network” The journal of vous consultez

L’archieve, May 2013.

[2] Hyojoon Kim and Nick Feamster, “Improving Network

Management with Software Defined Networking”, IEEE

Communications Magazine, 2013.

[3] HU Yan-nan, WANG Wen-dong, GONG Xiang-yang,

QUE Xi-rong, CHENG Shi-duan, “On the placement of

controllers in software-defined networks”, The Journal of

China Universities of Posts and Telecommunications, July

2012

[4] Soheil Hassas Yeganeh, Amin Tootoonchian, and Yashar

Ganjali, University of Toronto, “On Scalability of Software-

Defined Networking” IEEE Communications Magazine,

February 2013.

[5] Sakir Sezer, Sandra Scott-Hayward, and Pushpinder Kaur

Chouhan, Barbara Fraser and David Lake, Jim Finnegan and

Niel Viljoen, Marc Miller and Navneet Rao , “Implementation

International Journal of Advanced and Innovative Research (2278-7844) / # 150 / Volume 5 Issue 1

 © 2015 IJAIR. All Rights Reserved 150

Challenges for Software-Defined Networks” IEEE

Communications Magazine, July 2013.

[6] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru

Parulkar, Larry Peterson, Jennifer Rexford, Scott Shenker,

Jonathan Turner, “OpenFlow: Enabling Innovation in

Campus Networks” IEEE Communications Magazine ,March

2008.

[7] Arka Bhattacharya, Shaunak Chatterjee , “Routing

Algorithms for Rapidly Fluctuating Networks” The journal

of University of California, April 2010.

[8] Bob Lantz, Brandon Heller, Nick McKeown. “A Network

in a Laptop: Rapid Prototyping for Software-Defined

Networks” The journal of Stanford University, October 2010.

[9] Shuo Fang , YangYu , Chuan Heng Foh , and Khin Mi Mi

Aung, “A Loss-Free Multipathing Solution for Data Center

Network Using Software-Defined Networking Approach”

IEEE Transactions on Magnetics, June 2013.

[10] Janos Tapolcai , Pin-Han Ho, and Anwar Haque “A

Novel Approximate Link-State Dissemination Framework For

Dynamic Survivable Routing in MPLS Networks” the journal

of University of Waterloo, Canada, July 2013.

[11] Abhinava Sadasivarao, Sharfuddin Syed , Ping Pan,

Chris Liou, Andrew Lake, Chin Guok, Inder Monga, “A

Software Defined Networking Architecture for Transport

Networks” the joural of Infinera Corporation, August 2013.

[12] Aaron Gember, Robert Grandl, Junaid Khalid, Aditya

Akella , “Design and Implementation of a Framework for

Software-Defined Middlebox Networking” the journal of

University of Wisconsin-Madison, WI, USA, August 2013.

 .

International Journal of Advanced and Innovative Research (2278-7844) / # 151 / Volume 5 Issue 1

 © 2015 IJAIR. All Rights Reserved 151

