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Abstract— The notion that the purely phenomenological 

knowledge that we can extract by analyzing l a r g e amounts 

of data can be functional in healthcare seems to challenge the 

desire of VPH researchers to construct detailed mechanistic 

models for individual patients. But to carry out no model is 

ever entirely phenomenological or entirely mechanistic. We 

suggest in this arrangement paper that big data analytics can 

be successfully combined with VPH technologies to make 

robust and effective in silicon medicine solutions. In organize 

to do this, big data technologies must be further developed to 

cope with some precise requirements that emerge from this 

application. Such requirements are: working with sensitive 

data; analytics of multifaceted and heterogeneous data spaces, 

together with nontextual information; distributed data 

management under security and performance restraints; 

specialized analytics to integrate bioinformatics and systems 

biology information among clinical observations at tissue, 

organ and organisms levels; and specialized analytics to define 

the “physiological envelope” all through the day by day life of 

every patient. These domain-specific requirements suggest a 

call for for targeted funding, in which big data technologies 

designed for in silicon medicine becomes the research priority. 
 
 

Index Terms— Virtual  Physiological Human, big  data, 

healthcare 

 
I. INTRODUCTION 

The  birth  of  big  data,  as  a  concept   if   not   as   a 

term, is  usually  associated  with  a  META  Group  report 

by Doug Laney entitled “3D Data  Management: 

Controlling Data Volume, Velocity, and  Variety” 

published in 2001 [1]. Further developments now suggest 

big data problems are identified by the so-called “5V”: 

Volume (quantity of data), Variety (data from different 

categories), Velocity (fast generation of new d a t a ), 

Veracity (quality of the data),  and  Value  (in  the  data) 

[2]. 

 
For a long time  the  development  of  big  data 

technologies was inspired by  business  intelligence  [ 3] 

and by big science (such as the Large Hadron Collider at 

CERN) [4]. But when in 2009 Google Flu, simply by 

analysing  Google   queries,   predicted   flu-like   illness 

rates as accurately  as  the  CDC‟s  enormously  complex 

and expensive monitoring network [5],  some  analysts 

started to claim that all problems of modern  healthcare 

could be solved by big data [6]. 

In 2005, the term Virtual Physiological Human (VPH) was 

introduced to indicate “a framework of methods and 

technologies that,  once  established, w i l l  m a k e  possible 

the collaborative investigation of the human body as a single 

complex system” [7, 8].  The idea was quite simple: 

 
To r e d u c e t h e c o m p l e x i t y of living organisms, we 

decompose them into parts (cells, tissues, organs, organ 

systems) and investigate one part in isolation from the 

others. This approach has produced, for  example,  the 

medical specialties, where the nephrologist looks  only  at 

your  kidneys,  and  the  dermatologist  only  at  your  skin; 

this makes it very difficult to cope with multi-organ or 

systemic diseases,  to  treat  multiple  diseases  (so  common 

in the ageing population), and in  general  to  unravel 

systemic emergence due to genotype-phenotype interactions. 

But if we can recompose with computer models all the data 

and all the knowledge  we  have obtained  about each  part, 

we can use simulations to  investigate  how  these  parts 

interact with one another, across space and time and across 

organ systems. 

 
Though this may be conceptually simple, the VPH vision 

contains a tremendous challenge, namely the development 

of mathematical models capable of accurately predicting 

what will happen to a biological system.  To  tackle  this 

huge  challenge,  multifaceted  research  is   necessary: 

around medical imaging and sensing technologies  (to 

produce quantitative  data about the patient‟s anatomy and 

physiology) [9-11], data processing to extract  from  such 

data information that in some cases is not immediately 

available [12-14], biomedical modeling to capture the 

available knowledge into predictive simulations [15,  16], 

and computational science and engineering to run huge 

hyper models  (orchestrations  of  multiple  models)  under 

the operational conditions imposed by clinical usage [17- 

19]; see also the special issue entirely dedicated to 

multiscale modeling [20]. 

 
But the real challenge is the production of that mechanistic 

knowledge,  quantitative,  and  defined  over  space,   time 

and across multiple space-time scales, capable of being 

predictive with sufficient accuracy. After ten years of 

research this has produced a complex impact scenario in 

which a number of target applications, where  such 

knowledge was already available, are now being tested 

clinically. 
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Some e x a m p l e s  of  VPH  applications  that  reached  the 

clinical assessment stage are: 

The  VPHOP  consortium  developed  a  multiscale 

modelling  technology  based  on  c o n v e n t i o n a l 

diagnostic imaging methods that makes it possible, in a 

clinical setting, to predict for each patient the strength of 

their bones, how this strength is likely  to  change  over 

time, and the probability that they  will  overload  their 

bones during daily life. With these three predictions, the 

evaluation of  the  absolute  risk  of  bone  fracture  in 

patients affected by osteoporosis will be much  more 

accurate than any prediction based  on  external  and 

indirect determinants, as it is in current clinical practice 

[21]. 

 
More than 500,000 end-stage renal disease patients in 

Europe live on chronic intermittent haemodialysis 

treatment. A successful treatment critically depends on a 

well-functioning vascular access, a surgically created 

arterio-venous shunt used to connect the patient circulation 

to the artificial kidney. The ARCH project  aimed  to 

improve the outcome  of  vascular  access  creation   and 

long- term function with an image-based, patient-specific 

computational modelling approach. ARCH developed 

patient-specific computational models for vascular surgery 

that makes possible to  plan  such  surgery  in  advance  on 

the basis of the  patient‟s data, and obtain a prediction of 

the vascular access function outcome, allowing an 

optimisation of the surgical procedure and a reduction  of 

associated complications such as non-maturation. A 

prospective  study  is  currently  running,   coordinated   by 

the Mario Negri Institute  in  Italy.  Preliminary  results  on 

63 patients confirm the efficacy of this technology [22]. 

 
Percutaneous coronary intervention (PCI) guided by 

Fractional Flow Reserve (FFR) is superior to standard 

assessment alone to treat coronaries  stenosis. FFR-guided 

PCI results in improved  clinical outcomes, a reduction in 

the number of stents implanted, and reduced cost. 

However, currently  FFR is  used  in  few  patients,  because 

it is invasive and it  requires  special  instrumentation.  A 

less invasive FFR would be a valuable tool. The 

VirtuHeart project developed a patient-specific computer 

model that accurately predicts myocardial fractional flow 

reserve  (FFR)  from  angiographic  images  alone,  in 

patients  with  coronary  artery  disease.  In  a  phase   1 

study the methods showed an accuracy of 97%, when 

compared to standard FFR [23]. A similar approach, but 

based on Computed Tomography imaging, is even at  a 

more advanced stage,  having  recently  completed  a  phase 

2 trial [24]. 

While these and some other VPH projects have reached the 

clinical assessment stage, quite a few other projects are still 

in the technological  development,  or  pre-clinical 

assessment phase. But in some cases the mechanistic 

knowledge currently available simply turned out to be 

insufficient to develop clinically relevant models. 

 
So it is perhaps not surprising that recently, especially in the 

area of personalised healthcare (so promising but so 

challenging) some people have started to advocate the use 

of big data technologies as an alternative  approach,  in 

order to reduce the complexity that developing a reliable, 

quantitative mechanistic knowledge involves. 

 
This trend is  fascinating  from  an  epistemological  point 

of view. The VPH  was born around the  need  to 

overcome the limitations of a biology founded on the 

collection of a huge amount of observational data, 

frequently  affected  by considerable noise, and boxed into 

a radical reductionism that prevented  most  researchers 

from looking at anything bigger than  a  single  cell  [25, 

26]. Suggesting that we revert to a phenomenological 

approach where a predictive model is supposed to emerge 

not from mechanistic theories but by only doing high- 

dimensional big data analysis, may be perceived by some 

as a step toward that empiricism the VPH was created to 

overcome. 

 
In the following we will explain  why  the  use  of  big 

data methods  and  technologies  could  actually  empower 

and strengthen current VPH approaches, increasing 

considerably its chances of clinical impact in many 

“difficult” targets. But in order for that to happen, it is 

important that big data researchers are aware  that  when 

used in  the  context  of  computational  biomedicine,  big 

data methods need to cope with a number of  hurdles that 

are specific to the domain. Only by developing a research 

agenda for big data in computational biomedicine  can  we 

hope to achieve this ambitious goal. 

 
II. DOCTORS  AND  ENGINEERS:  JOINED  AT  THE 

HIP 

As engineers who have worked for many years in 

research hospitals we recognise that clinical  and 

engineering researchers share a similar mind-set. Both in 

traditional engineering and in medicine,  the  research 

domain is defined in terms of problem solving, not of 

knowledge discovery. The motto common  to  both 

disciplines is “whatever works”. 

 
But  there  is  a  fundamental   difference:   engineers 

usually deal with problems related to phenomena on which 

there is a large body of reliable knowledge from physics and 

chemistry. When a good reliable mechanistic theory is not 

available engineers resort to empirical models,  as  far  as 

they can solve the problem at hand. But when they do this, 

they are left with a sense of fragility and mistrust, and they 

try to replace them as soon as possible with theory-based 

mechanistic models, which are both predictive and 

explanatory. 

 
Medical researchers deal with problems for which there 

is a much less well established body of knowledge; in 

addition, this knowledge is frequently qualitative or semi- 

quantitative, and  obtained   in   highly  controlled 

experiments quite removed from clinical reality, in order to 

tame the  complexity  involved.  Thus,  not  surprisingly, 

many  clinical  researchers  consider  mechanistic  models 

“too simple to be trusted”, and in general the whole idea 

of a mechanistic model is looked upon with suspicion. 
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But   in   the   end   “whatever   works”   remains   the 

basic principle. In some VPH  clinical  target  areas  where 

we can prove convincingly that  our  mechanistic  models 

can provide more accurate predictions than the epidemiology-

based phenomenological models, the penetration into 

clinical practice is happening. On the other hand, when 

our mechanistic  knowledge  is insufficient, the predictive 

accuracy of  our  models  is poor, and models based  on 

empirical/statistical evidences are still preferred. 

 
The true problem behind this  story  is  the 

competition between two  methods  of  modelling  nature 

that  are  both  effective  in  certain  cases.  Big  data   can 

help computational biomedicine to transform this 

competition into collaboration, significantly increasing the 

acceptance of VPH technologies in clinical practice 

 
III. BIG DATA VPH: AN EXAMPLE 

IN  OSTEOPOROSIS 

In order to illustrate this concept we will use as a 

guiding example the problem of predicting the risk of bone 

fracture in a woman affected by  osteoporosis,  a 

pathological reduction of her bone mineralised mass [27]. 

The goal is to develop predictors that indicate whether the 

patient is likely to fracture over a given time (typically in 

the following ten years). If  a  fracture  actually  occurs  in 

that period, this is the true value used to decide if the 

outcome prediction was right or wrong. 

 
Because the primary manifestation of the  disease  is 

quite simple (reduction of the mineral density of the bone 

tissue) not surprisingly researchers found that when such 

mineral density could be  accurately  measured  in  the 

regions where the most  disabling fractures  occurred  (hip 

and spine), such measurement was a predictor of the risk 

of fracture [28]. In controlled  clinical  trials,  where 

patients are recruited to exclude  all  confounding  factors, 

the  Bone  Mineral  Density  (BMD)  strongly   correlated 

with  the  occurrence  of  hip  fractures.  Unfortunately, 

when BMD is used as a predictor, especially over 

randomised populations, the accuracy drops to 60-65% 

[29]. Given that fracture is a binary event, tossing a coin 

would give us 50%, so this is considered not good enough. 

 
Epidemiologists run huge  international,  multicentre 

clinical trials where the fracture events are related to a 

number of observables; the data are then fitted  with 

statistical models that provide phenomenological models 

capable of predicting the likelihood of fracture; the most 

famous, called FRAX, was  developed  by  John  Kanis  at 

the University of Sheffield, UK, and is considered by the 

World Health Organisation the reference  tool  to  predict 

risk of fractures. The predictive accuracy of FRAX is 

comparable to that of BMD, but it seems more robust for 

randomised female cohorts [30]. 

In the  VPHOP  project,  one  of  the  flagship  VPH 

projects funded by the Seventh Framework Program of the 

European Commission, we took a different approach: we 

developed a multiscale patient-specific model informed by 

medical imaging and wearable sensors, and used this model 

to predict the actual risk of fracture of the hip and  at  the 

spine, essentially simulating 10 years of the patient‟s daily 

life [18]. The results of the first  clinical  assessment, 

published only a few weeks ago, suggest that the VPHOP 

approach could increase the predictive accuracy to  80-85% 

[31]. Significant but not dramatic: no information  is 

available yet on the accuracy  with  fully  randomised 

cohorts, although we expect the  mechanistic  model  to  be 

less sensitive to biases. 
 

 
The goal of the VPHOP project was to replace FRAX; 

in doing this  the research consortium took a considerable 

risk, common  to  most  VPH  projects,  when  a  radically 

new and complex  technology  aims  to  replace  an 

established standard of care. The difficulty arises from the 

need to step into the  unknown,  with  the  outcome 

remaining unpredictable until the work is complete. In our 

opinion big data technologies could change this high-risk 

scenario, allowing a progressive approach to modelling 

where predictions are initially generated only using the 

available data, and then progressively a priori knowledge is 

introduced about the physiology and the specific disease, 

captured into mechanistic predictive models. 

 
FRAX uses Poisson processes to define an epidemiological 

predictor   for   the   risk   of   bone   fracture   in   osteoporotic 

patients, which consider only the bone mineral density and 

a  few  personal   and   clinical   information   on   the   patient 

[32].   It   has  already   been  proposed  that   this   could  be 

extended  to  include also  data  related  to  the  propensity  to 

fall,  such  as  stability tests, or wearable sensor recordings 

[33]. On the other hand, a vital piece of this puzzle is the 

ability of a patient‟s bone (as depicted in CT scan dataset) 

to  withstand  a  given  mechanical  load  without  fracturing; 

this  is  something  we   can  predict  mechanistically  with 

great accuracy [34]. The future are technologies  that  make 

possible   (and   easy)   to   combine   statistical,   population- 

based knowledge with mechanistic, patient-specific 

knowledge; in the case at hand, we could keep a stochastic 

representation  of  the  fall,  and  of  the  resulting  load,  and 

model mechanistically the fracture event in itself. 

 
Can this example be considered a big data problem, in the 

light of the “5V” 

definition? 

- Volume: This is probably the big data criterion that 

current VPH research fits least well. Although the 

community wishes to exploit the vast  entirety  of 

clinical data records, often there  is  simply  not  the 

level of detail, or depth, that supports the association 

of parameters  in  the  mechanistic  models  with  the 

data in the clinical record. The datasets that support 

these analyses are often very expensive to acquire, and 
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currently  the  penetration  is  limited.  Nevertheless 

this is an important area of research, in  which  the 

VPH community could learn from, and  exploit, 

existing technology  from  the  big  data community. 

 
- Variety:  the  variety  is  very  high.  In  the  example  

at hand we would have clinical data, data from 

medical imaging, data from wearable sensors, lab 

exams, and   simulation   results.   This   would   

include   both structured and non structured data, with 

3D imaging posing specific problems of data 

treatment such as automated  voxel  classification (see 

as examples [35- 37]). 

- Velocity: osteoporosis is a  chronic   condition;  as 

such all patients are expected to undergo a full 

specialist control every two years, where the totality 

of the examinations is repeated. Regarding growth 

rate: If to  this we add that the ageing  of  the 

population is constantly increasing the number of 

patients affected, we  face growth  rates  in the order 

of 55-60% every year. 

- Veracity: here there is  a  big  divide  between 

clinical research and clinical practice. While data 

collected as part of clinical  studies  are   in   general 

of good quality, clinical practice  tends  to  generate 

low quality data. This is due in part to the extreme 

pressure medical professionals face, but also  to  a 

lack of “data value” culture; most medical 

professionals see the logging of data a bureaucratic 

need and a waste of time that distracts them from the 

care of their patients. 

- Value: the potential  value  associated  with  these 

data is very high. The cost of osteoporosis, including 

pharmacological intervention in the EU in 2010 was 

estimated at €37 billion [38]. Moreover, in general, 

healthcare  expenditure   in   most   developed 

countries  is  astronomical:  the  2013/2014  budget 

for NHS England was £95.6 billion,  with  an 

increase over the previous year of 2.6%, at  a  time 

when all public services in the UK are facing hard 

cuts. In OECD countries we spend on average 

USD$3,395 per year per inhabitant in healthcare 

(source: OECD 2011). But the real value  of  Big 

Data Analytics in healthcare still remains to  be 

proven. We believe this is  largely  due  to  the  need 

for much more sophisticated analytics, which 

incorporate apriori knowledge of pathophysiology; 

this is exactly what the VPH has to offer to big data 

analytics in healthcare. 

 
IV. FROM DATA TO THEORY: 

A CONTINUUM 

Modern big data technologies make it possible in a short 

time to analyse  a  large  collection  of  data  from thousands 

of patients, identify clusters and correlations, and develop 

predictive models using statistical or machine-learning 

modelling techniques [39, 40]. In  this  new  context  it 

would be feasible to take all the data collected in all past 

epidemiology studies - for example, those used to develop 

FRAX - and continue to enrich them with new  studies 

where  not  only  new  patients  are 

added, but different types of information are collected. 

 
Another mechanism that in principle very high-throughput 

technologies make viable for exploration is the normalisation 

of digital medical images to conventional space-time reference 

systems, using elastic registration methods [41-43], followed 

by the treatment of the quantities expressed by  each  voxel 

value in the image as independent data quanta. The  voxel 

values of the scan then become another medical dataset, 

potentially to be correlated with average blood pressure, body 

weight, age, or any other clinical information. 

 
Using statistical modelling or  machine  learning  techniques. 

we may obtain good predictors valid for the range of the data 

sets analysed; if a database contains outcome observables for a 

sub-set of patients, we will be able to compute automatically 

the accuracy of such a predictor. Typically the result of this 

process would be a potential clinical tool  with  known 

accuracy; in some cases the result would provide a predictive 

accuracy sufficient for clinical purposes, in others a higher 

accuracy might be desirable. 

 
In some cases there is need for an explanatory theory, which 

answers the “how” question, and which may be used  in  a 

wider context than that a statistical model normally is. As a 

second step, one could use the correlation identified by the 

empirical modelling to  elaborate  possible  mechanistic 

theories. Given that the available mechanistic knowledge  is 

quite incomplete, in many cases we will be able to express a 

mathematical model only for a part of the process to be 

modelled; various “grey-box” modelling methods have been 

developed in the last few years that allow one to  combine 

partial mechanistic knowledge  with phenomenological 

modelling [44]. 

 
The last step is where physiology, biochemistry, 

biomechanics, and  biophysics  mechanistic  models  are 

used. These models contain a large amount of validated 

knowledge, and require only a relatively small amount of 

patient-specific data to be properly identified. 

 
In many cases these mechanistic models are extremely 

expensive  in  terms  of   computational  cost;  therefore 

input- output  sets  of  these  models  may  also  be  stored  in 

a data repository in order to identify reduced-order models 

(also referred as  „surrogate‟  models  and  „meta-models‟) 

that accurately replace a computationally expensive  model 

with a cheaper/faster simulation [45]. Experimental design 

methods are  used  to  choose  the  input  and  output 

parameters or  variables with which  to run  the mechanistic 

model in order to generate the meta-model‟s state space 

description of the input- output relations – which is often 

replaced with a piecewise partial least-squares regression 

(PLSR) approximation [46]. Another approach is to use 

Nonlinear AutoRegressive Moving Average model with 

eXogenous inputs (NARMAX) in the framework of non- 

linear systems identification [47]. 
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It is interesting to note that no real model is ever fully 

“white-box”. In all cases, some phenomenological 

modelling is required to define the interaction  of  the 

portion of reality under investigation with the rest of the 

universe. If we accept that a  model  describes   a  process 

at a certain  characteristic  space-time  scale,  everything 

that happens at any scale larger or smaller than that must 

also be accounted for phenomenologically. Thus, it is 

possible to imagine a complex process being modelled as 

an orchestration of sub- models, each predicting a part of 

the process  (for example at different scales), and we can 

expect that, while initially all sub-models will be 

phenomenological, more and more will  progressively 

include some mechanistic knowledge. 

 
The idea of a progressive increase of the explanatory 

content of a hypermodel is not fundamentally new; other 

domains of science  already  pursued  the  approach 

described here. But in the context of computational 

biomedicine this is an approach  used  only  incidentally, 

and not as a systematic strategy for the progressive 

refinement of clinical predictors. 
 

 
V. BIG DATA FOR COMPUTATIONAL BIOMEDICINE: 

REQUIREMENTS 

In a complex scenario such as the one described above, 

are the currently available technologies sufficient to cope 

with this application context? 

The brief answer is no. A number of shortcomings that 

need to be addressed before big data technologies can be 

effectively and extensively used in computational 

biomedicine. Here we list five of the most important. 
 

 
A. Confidential data 

The majority of  big  data  applications  deal  with  data that 

do not refer to  an  individual  person.  This  does  not 

exclude the possibility that their aggregated information 

content might not be socially sensitive, but very rarely is it 

possible to reconnect such content to the identity of an 

individual. 

In the cases where sensitive data are involved, it is usually 

possible to collect and analyse  the  data  at  a  single 

location; so this becomes a problem of computer security; 

within the secure box, the treatment of the data is identical 

to that of non- sensitive data. 

Healthcare poses some peculiar problems in this area. 

First, all medical data are highly sensitive, and in many 

developed countries are considered legally owned by the 

patient, and the healthcare provider is required to respect 

patient confidentiality. The European  parliament  is 

currently involved in a complex debate about data 

protection legislation, where the need for individual 

confidentiality can be in conflict with the needs of society 

[48]. 

Secondly, in order to be useful for diagnosis, prognosis or 

treatment planning purposes the data analytics results  must  in 

most cases be re-linked to the identity of the patient. This 

implies that the clinical data cannot be fully and irreversibly 

anonymised before leaving the hospital, but requires complex 

pseudo-anonymisation  procedures.Normally  the  clinical   data 

are pseudo-anonymised so as to ensure a  certain  k-anonymity 

[49], which is considered legally and ethically acceptable. But 

when the data are, as part of big  data  mash-ups,  relinked  to 

other data, for example from social networks or other public 

sources, there is a risk  that  the  k-anonymity  of  the  mash-up 

can be drastically reduced. Specific  algorithms need to be 

developed that prevent such data aggregation when the k- 

anonymity could drop below the required level. 
 

 
B. Big    data:    big size    or big 

complexity? 

Consider two data collections: 

In one case we have 500 TB of log data from a popular web 

site: a huge list of text strings, typically encoding  7-10 

pieces of information for transaction, for example the log file 

of a very popular web site. 

 
In the other, we have  a  full  VPHOP  dataset  for  100 

patients, a total of 1TB; for each patient we have  122 

textual information items  that encode the clinical data, three 

medical imaging datasets of different types, 100 signal files 

from wearable sensors, a neuromuscular dynamics output 

database, an organ- level model with the results, and a 

tissue-scale model with the predictions of bone  remodelling 

over 10 years. This is a typical VPH data folder; some 

applications require  even more complex data spaces. 

 
Which one of these two data collections should be 

considered big data? We  suggest  that  the  idea  held  by 

some funding agencies, that the only worthwhile 

applications are those  targeting data collections  over a 

certain size, trivialises the problem of big data analytics. 

While the legacy role of big data analysis is the 

examination of large amounts  of  scarcely  complex  data, 

the future lies in the analysis of  complex  data, eventually 

even in smaller amounts. 
 

 
C. Integrating         bioinformatics, 

systems   biology,  and   phenomics 

data 

Genomics and post-genomics technologies produce very 

large amounts of raw data  about  the  complex 

biochemical processes that regulate each living organism; 

nowadays a single deep-sequencing dataset can exceed 

1TB [50]. More recently  we have started to see the 

generation  of  “deep  phenotyping”  data,   where 

biochemical, imaging,  and  sensing  technologies  are  used 

to quantify complex phenotypical  traits  and  link  them  to 

the genetic information [51]. 
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These data are processed with specialised big  data 

analytics techniques, which come from bioinformatics, but 

recently there is growing interest in building mechanistic 

models of how the many species present inside a cell 

interact  along  complex  biochemical   pathways.   Because 

of the complexity and the  redundancy  involved,  linking 

this very large body of mechanistic knowledge to the 

higher-order cell-cell and cell- tissue interactions remains 

very difficult, primarily for the data  analytics problems it 

involves. But when this is possible, genomics research 

results finally link  to  clinically  relevant  pathological 

signs, observed  at tissue,  organ, and organism scales, 

opening the door to a true systems medicine. 
 

 
D. Where are 

the data? 

In big data research, the data are usually stored and 

organised in order to maximise the efficiency of the data 

analytics process.  In  the  scenario  described  here, 

however, it is possible that parts of  the  simulation 

workflow require special hardware,  or  can  be  run  only 

on  certain  computers  because  of  licence  limitations. 

Thus one ends up trading the needs of the data analytics 

part with those of the  VPH  simulation  part,  always 

ending up with a sub-optimal solution. 

 
In such complex simulation scenarios, data management 

becomes part of the simulation process; clever methods 

must be developed to replicate/store certain  portions  of 

the data within organisations and at locations that 

maximise the  performance of the overall simulation. 
 

 
E. The physiological envelope and the 

predictive avatar 

In the last decade there has been a great deal of interest in 

the generation and analysis of patient-specific models. 

Enormous progress has been made in the integration of 

image processing and engineering analysis, with many 

applications in healthcare across the spectrum from 

orthopaedics to  cardiovascular  systems  and   often 

multiscale models of disease processes, including  cancer, 

are included in these analyses.  Very  efficient  methods, 

and associated workflows, have been developed  that 

support the generation of patient-specific  anatomical 

models   based   on   exquisite   three   and   four- 

dimensional medical images  [52,  53].  The  major 

challenge now is to use these models to predict acute and 

longer-term physiological and biological changes that will 

occur under the progression  of  disease  and  under 

candidate interventions, whether pharmacological or 

surgical. There is a wealth of data in the clinical record that 

could support this, but its transformation into relevant 

information is enormously difficult. 

All engineering models of human organ systems, whether 

focused on structural or  fluid  flow  applications,   require 

not  only  the  geometry   (the   anatomy)   but   also 

constitutive equations and boundary conditions. The 

biomedical engineering community is only beginning  to 

learn how to  perform truly personalised analysis, in  which 

these parameters are all based on individual physiology. 

There  are  many  challenges  around  the   interpretation   of 

the data that is collected in the course of routine clinical 

investigation, or indeed assembled in the Electronic Health 

Record or Personal Health Records. Is it possible to predict 

the threat  or challenge conditions (e.g. limits of blood 

pressure, flow  waveforms, joint loads), and their frequency 

or duration, from the data that is collected? How can the 

physiological envelope of the individual be described and 

characterised? How many analyses need to be done to 

characterise the  effect  of  the  physiological  envelope  on 

the progression of disease or on the effectiveness  of 

treatment? How are these analyses best formulated and 

executed computationally? How is information on disease 

interpreted in terms of physiology? As an example, how 

(quantitatively)  should  we  adapt  a  patient-specific 

multiscale model of coronary artery disease to reflect the 

likelihood that a diabetic patient has impaired coronary 

microcirculation? At a more generic level, how can the 

priors  (in  terms  of  physical  relationships)  that   are 

available from engineering analysis be integrated into 

machine learning operations in the context of digital 

healthcare, or alternatively how can machine learning  be 

used to characterise the physiological envelope to support 

meaningful diagnostic and prognostic patient-specific 

analyses? For a simple example,  consider  material 

properties: arteries stiffen as  an  individual  ages,  but 

diseases such as moyamoya syndrome can also dramatically 

affect arterial  stiffness; how should models be modified to 

take into account such incidental data entries in the patient 

record? 

 
VI.CONCLUSIONS 

Although sometimes overhyped, big data technologies do 

have great potential in the domain of computational 

biomedicine, but their development should take place in 

combination with other modeling strategies, and not in 

competition. This will minimize the risk of research 

investments, and will  ensure   a   constant   improvement   of 

in silico medicine, favoring its clinical adoption. 
 

 
We have described five major problems  that  we believe 

need to be tackled in order to  have  an  effective 

integration of big data analytics and VPH modelling in 

healthcare. For some of these problems there is already an 

intense on-going research activity, which is comforting. 
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For many years the high-performance computing  world 

was afflicted by  a  one-size-fits-all  mentality  that 

prevented many research domains  from fully  exploiting 

the potential of these technologies; more recently the 

promotion of centres  of  excellence,  etc.,  targeting 

specific application domains,  demonstrates  that  the 

original strategy was a mistake, and that technological 

research must be  conducted  at  least  in  part  in  the 

context  of each application domain. 

 
It is  very  important  that  the  big  data  research 

community does not  repeat  the  same  mistake.  While 

there is clearly an  important  research  space  examining 

the fundamental methods and technologies for big data 

analytics, it is vital to acknowledge  that  it  is  also 

necessary to fund domain-targeted research that allows 

specialised solutions to be developed for specific 

applications. Healthcare in general, and computational 

biomedicine in particular, seems a natural candidate for this. 
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