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Abstract - One of the helpful techniques of improving 

the coverage and enhancing the capacity and resource 

allocation in cellular wireless networks is to reduce 

the cell size and transmission distances. The concept 

of deploying femtocells over macro cell has recently 

concerned growing interests in academic circles, 

industry, and consistency forums. Various technical 

challenges towards group deployment of femtocells 

have been address in recent creative writing. 

Interference mitigation  femtocell and macro cell is 

considered to be one of the major challenges in 

femtocell networks because femtocells share the same 

permitted frequency spectrum with macrocell the 

different state-of-the-art approaches for interference 

and resource management in orthogonal frequency-

division multiple access (OFDMA)-based femtocell 

networks. We develop a local searching algorithm 

and pareto optimal matching algorithm for using the 

project. 

Index Terms— Femtocells, power control (PC), 

resource allocation (RA), outage balancing, 

interference management, orthogonal frequency 

division multiple access (OFDMA). 

 

I. INTRODUCTION 

Low-Power low-cost femto base-stations (FBS) 

have shown promises for providing better 

indoor/dense coverage and higher system 

throughput. Allowing femtocells to share the 

channels with macro-cell user equipments (MUE) 

can offer better spectral efficiency, but unplanned 

femtocell deployment may significantly degrade 

system performance In this paper, we study the 

problem of outage balancing in a tiered multi-

carrier macro-femto network through joint resource 

allocation (RA) and power control (PC). power 

control problem formulations with each sub-

problem transformable to a geometric 

programming problem. The generalization to a 

multi-carrier system, however, is non-trivial due to 

the intrinsic non convexity when dealing with 

interference channel and the combinatorial lnature 

of RA. Joint PC and RA (JPCRA) algorithms have 

been proposed in [9]–[12]. As its single carrier 

counterpart, solutions to multi-carrier multi-cell 

JPCRA problems are generally NP-hard. [9] 

proposed a heuristic cluster-based  JPCRA 

algorithm to tackle a multi-objective problem 

considering users’ differential Q o S requirements. . 

Linear approximation is applied by [10] to 

transform the rate maximization problem into a 

mixed integer linear programming, requiring full 

channel knowledge at a central node. In [11], dual 

decomposition is used to separate different 

optimizing variables. Main contributions of this 

paper can be summarized as follows: (1) From 

known channel statistics, we formulate the outage-

balancing of femtocells into a (non-convex) 

optimization problem under the macrocell user 

outage probability constraint We apply successive 

convex approximation (SCA) to find an 

approximate solution to the outage-balancing 

problem and provide a local searching algorithm by 

solving a sequence of geometric programming (GP) 

problems. A practical distributed implementation of 

the outage balancing problem by utilizing some 

message passing among base-stations over the 

network back-haul links. The following notation is 

used in our paper. Column vectors and matrices are 

denoted by boldfaced lowercase and uppercase 

respectively. Let ρ(F) denote the Perron-

Frobeniuseigen value of a nonnegative matrix F, 

and x(F) and y(F)denote the Peron right and left 

eigenvectors of F associated with ρ(F). We let el 

denote the unit coordinate vector, I denote the 

identity matrix and 1 = [1, . . . , 1]_.The 

superscripts(・)denotes transpose, and _・_F 

denotes the Frobeniusnorm. We denote x ◦ y as a 

Schur product of x and y, i.e. ,x ◦ y = [x1y1, . . . , x 

L y L]_. For a vector x = [x1, . . . , x L]_, diag(x) is 

its diagonal matrix diag(x1, . . . , x L). Let  ex 

denote ex = (ex1, . . . , e x L)_, and log x denote log 

x =(log x1, . . . , log x L). An equality involving 

eigen vectors is true up to a scaling constant. the 

RA scheme for one cell does not affect the optimal 

function value. Unless otherwise specified, weal 

locate the m-t h channel to such are power 

constraints for all BS and Pi is the total power 

budget Constraint (3d) implies that exactly one 

channel is allocated to one user Linear constraint 

(3e) ensures that one channel can be allocated to at 

most one user by assumption. In what follows, we 

will describe a SCA algorithm to find (at least) a 

local optimal point to problem (12) by solving a 

series of GP problems. where w i, m is the relative 

importance1 of the FUE-(i, m)’s success 

probability and τ0,m is a pre-specified constant that 

represents the maximal allowed outage probability 

for the m-t h MUE. Since the channel statistics are 

channel independent by A.2, fixing the RA scheme 
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for one cell does not affect the optimal function 

value. Unless otherwise specified, we allocate the 

m-t h channel to MUE-m such that C(m) 0,m = 1. ]. 

In our problem formulation, the two parameters 

related to PBSs or PUs are channel gains between 

SUs and PBSs (i.e., gij), and interference levels 

caused by PUs to the SBS(i.e., IP). Estimating and 

tracing the exact values of the above parameters are 

not easy for SUs due to the fact that PBSs are not 

obliged to provide any information to SUs. Both of 

the above parameters are contained in the linear 

constraints C2 and C3 in (4). To deal with such 

uncertainties, we use the worst case robust 

optimization method for affine constraints convex 

optimization. Orthogonal RA is assumed among 

UEs in each cell (macrocellor femto-cell) such that 

there is no co-channel interferencebetween users 

served by the same BS. A cell is the service area 

covered by a BS. Together with A.5, we further 

restricts the number of users Mi ≤ K, ∀i ∈ B to 

ensure RA feasibility. Let C(k)i, m be an indicator 

of channel allocation with C(k)i, m = 1 if channel k 

is allocated to user (i, m) and zero otherwise. If 

user(i, m) is allocated channel k, the received 

SINR. 

 

II. POWER CONTROL RESOURCE 

ALLOCATION 

 We consider a heterogeneous network 

configuration in which femtocells share macro-cell 

channels. Assuming that interference from other 

macro-cells are well-mitigated, we confine the 

interference effect and outage balancing problem 

within one macro-cell .Our problem formulations 

are based on the followingassumptions:A.1 

Independent Rayleigh fading is assumed for all 

channellinks.A.2 Denote the mean channel power 

gain from BS- j to user(I ,m) as G i  j ,m and fast 

fading term as g(k)i j, m in channel k. Then the 

instantaneous channel power gain is G i j, m g(k)i j 

,m with g(k)i j,m satisfying exponential distribution 

with unit\mean because of assumption A.1.A.3We 

assume that both Gi j,m and noise power n i, m at 

UE (i, m)are independent on channel k.A.4 Let 

p(k)i be the transmit power of BS-i in channel k. 

We assume that the average interference power 

{p(k)j G i j ,m, j _=i} and channel G I i, m can be 

measured at user (i, m).A.5 Every MUE or FUE is 

allocated only one channel. This is assumed for 

simplicity of presentation. When a single UE is 

allocated multiple channels with per-channel SINR 

requirement, the UE can be modeled as multiple 

virtual users, each with one channel .The SINR 

thresholds for FUEs, on the other hand, are 

variables in our problem formulation. This SINR 

distribution is translated to a rate allocation through 

Shannon’s capacity formula as in the left hand-side 

of (5c) and R i is the rate threshold. For simplicity, 

ideal capacity formula is used in this paper for the 

FUE rate calculation, though modulation and 

coding gaps can also be included depending on the 

practical transmission schemes. As such, the robust 

power allocation problem is changed to the 

standard form of convex optimization, which can 

be solved very efficiently. 1.Algorithm 1 Main 

Iteration Step 1: Initialize s = 1, a(k)j ,s = 1 for ∀ j∈ 

F, b(k)s = 0for ∀k ∈ K0 and a feasible p0 = 

{p(k)i,0}Step 2: Find optimal solution p s = {p i, s} 

to problem (15)Step 3: s←s+1; updates a(k)j ,s and 

b(k)s using (13) and (14).Go to Step 2 unless 

stopping criterion is met. Proposition 1    

The convergence follows from the general results 

for the generic convex approximation methods 

[25]. Convexity of the transformed problem (10) 

implies the convergence to an optimal point. 

 
 

III. LOCAL SEARCHING ALGORITHM 

In many optimization problems, the state space is 

the space of all possible complete solutions We 

have an objective function that tells us how “good” 

a given state is, and we want to find the solution 

(goal)by minimizing or maximizing the value of 

this function. In many optimization problems, the 

state space is the space of all possible complete 

solutions We have an objective function that tells 

us how “good” a given state is, and we want to find 

the solution (goal) by minimizing or maximizing 

the value of this function The start state may not be 

specified The path to the goal doesn’t matter In 

such cases, we can use local search algorithms that 

keep a single “current” state and gradually try to 

improve it.  
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IV. PARETO  OPTIMAL                  

MATCHING  ALGORITHM 

Fix N = f1; _ _ _ n g, a set of agents and H, a set of 

equally many objects, called houses. A sub 

matching _ : N_ ! H_ is a b I jection with N_ _ N 

and H_ _ H; _(i) is agent i' s  match under _. If N_ 

= N, _ is a matching. Matching are also denoted as 

vectors with the understanding that the I t h 

component of _ represents _(i). The sets of all 

matching sand respectively of all sub matching that 

are not themselves matching, are M and M. The 

sub matching under which no one is matched, ; is 

an element of M. The sets of un matched agents 

and houses at some _ 2 M are N_ and H_. If _(i) = 

_0(i) for all i 2 N_ _ N_0 holds for two sub 

matching _; _0, then _ is a sub matching of _0 (_ _ 

_0). Pycia and Unver's [10] ingenious terminology 

to de ne Papai's [28] hierarchical ex-change   

mechanisms. For any _xed _ 2 M de ne an owner 

ship function o_ : H_ ! N _, with the understanding 

that agent o_(x) owns house x at the sub matching 

_. A hierarchical exchange mechanism is de_ ne d 

through a set of ownership functions o = (o_)_2M 

where  o_(x) = o_0(x) holds for any two sub 

matching _ _ _0 with o_(x) =2 N_0 and x =2 H_0 . 

So ownership must persist in the sense that an 

agent i =2 N_0 must own a house x =2 H_0 at _0 

ifi owns x at a sub matching _ of _0. The outcome 

of any hierarchical exchange mechanism is 

determined through the following trading 

process.5At the start let _1 = ; and k = 1. Round k: 

each house in H_ k points to its owner according to 

o_ k , each agent i 2 N_ k points to a house in H _k 

. At least one cycle forms. Calculate _k+1as 

_k+1(i) = _k(i) for i 2 N _k and _k+1(i) = x if i 

points to x in one of the cycles. Terminate the 

mechanism if I f _k+1 is a matching. If not, go on 

to round k + 1.At the start of a hierarchical 

exchange mechanism, agents are asked to point to 

houses .Houses in turn point to their owners. At 

least one cycle of agents and houses forms. Any 

agent in such a cycle is matched with the house he 

is pointing to and leaves the mechanism. When an 

owner of multiple houses leaves, his unmatched 

houses are passed on to the remaining agents 

according to some _x e d inheritance rule, implied 

by the ownership functions. Agents are once again 

asked to point to the remaining houses and the 

same procedure is repeated until each5.The 

restriction to hierarchical exchange mechanisms is 

not costless. Pycia and Unver [30] de _ne a class of 

problems in which hierarchical exchange 

mechanisms are strictly Lorenz-dominated by some 

other strategy proof, Pareto optimal and non-bossy 

mechanisms. Abdul kadiroglu, Cheand Yasuda [3] 

show that the use of ordinal mechanisms when 

agents have cardinal utilities may lead to welfare 

losses, Pycia [31] shows that these losses can be 

arbitrarily large. Agent is matched. Serial 

dictatorships ^o and Gale's top trading cycles 

mechanism by Shapley and Scarf [33]) are 

hierarchical exchange mechanisms. The former 

arises when ^o_(h) only depends on j N_ j the 

number of agents already matched under _, the 

latter arises if o;(h) 6= o;(h0) holds for all h 6= 

h0.For any _x e d hierarchical exchange 

mechanism and any permutation p : N ! N de_ ne a 

permuted hierarchical exchange mechanism From 

assumptions A.1 to A.3, the numerator is the 

instant angelus received signal power from the 

serving BS-i, while the denominator contains 

interference from other BS’s and the noise power at 

the receiver. To simplify the notation, define Fi j,m 

= Gi j, m/G ii,m,vi,m=ni,m/Gii,m. success 

probabi -specified constant 

that represents the maximal allowed outage 

probability for the m t h MUE. Since the channel 

statistics are channel independent by A.2, fixing the 

RA scheme for one cell does not affect he optimal 

function value. the outage performance versus the 

main iteration number s. While we would rather not 

waste computation for a sub-problem by choosing 

T so large that the algorithm already converges for 

each sub problem before updating, larger T is in 

general more preferable than updating the 

coefficients and moving to another sub-problem 

pre-maturely for smaller final convergence error. 
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Denote the set of resources and the set of 

femtocells (and their FBS) as K = f1; :::;Kg and N 

= f1; :::;Ng, respectively .Let the index of MBS be 

0 and the total set of base stations be denoted as B 

= N [ f0g. We further assume that resources are 

shared in TDMA mode within each femtocell such 

that at a given time, only one FUE will be 

scheduled1,while multiple non-interfering MUEs 

can be scheduled at the same time. The resource 

allocation and SINR requirement for each macro-

cell user equipment (MUE) remains stationary with 

in the time-duration of femtocell action, in which 

FBS ’scan dynamically distribute its SINR 

requirements in different resources to satisfy the 

FUE’s downlink rate requirement .In order to 

achieve user service fairness, this work considers 

the problem of outage balancing among actively 

connected FUEs in a spectrum sharing 

heterogeneous system. Our approach aims to 

minimize a utility function of outage probability of 

FUEs under constraint of MUE outage 

requirement. This SINR distribution is translated to 

a rate allocation through Shannon’s capacity 

formula as in the left-hand-side of (5c) and R i is 

the rate threshold. For simplicity, ideal capacity 

formula is used in this paper for the FUE rate 

calculation, though modulation and coding gaps 

can also be included depending on the practical 

transmission schemes. (5d) denotes the total power 

constraint with _ Pi is the power budget for the I t h 

BS. Assuming a full resource sharing scenario of K 

= 5, Fig.3 shows each FUE’s outage probability 

versus different rate requirement for two 

configurations. As FBS 3 moves from lower left to 

upper left, it causes more interference to FBS 2and 

also sees higher interferences from other nodes.  

 
 

V. SIMULATIONS 

In this section, we present simulation studies on the 

performance of the proposed DDPC algorithm in 

the case of multiple asynchronous SU’s. First, we 

provide the convergence result for the special case 

in which the observation noise additive to ˜g(Λ) is 

a zero-mean uniformly distributed random variable 

within [-0.5, 0.5]. In the simulation, we set M = 3, 

η = 0.1,η0 = 0.01, c = 0.0001, υ = 0.4, a0 = 50, and 

P max = 30dB(1000mW) (the corresponding ¯x = 

log(1000) = 6.9078). The activation instants of the 

three SUs are 1, 100, and 200, respectively .The 

initial value of λi(0) is set to 100 for each SU .The 

effective interference channel gain from each SU to 

the PU-Rx b is are set to [0.3568, 0.0197, 

0.4432]×10−3. In other words, SU-2 has the best 

channel opportunity. We display the updates of λ i 

and xi over time, and the convergent point λ s in 

Figure 4, from which we can confirm the 

convergence of more than two SUs without 

synchronization. After convergence, the transmit 

power of SUs is [112, 1000, 90] m  W. Specially, 

SU-2 transmits with the maximum power most of 

the time. We can observe that SUs with larger 

average interference channel gains transmit with 

smaller power. We also test the algorithm using 5 

different random seeds, and the resulting average e 

PU outage probabilities along each convergence 

process are smaller than 0.1004, i.e., only slightly 

larger than η .We also show the difference between 

the convergent point λ s and λ o as the value of c 

varies in Figure 5 for cases when M = 2, 4, 6, η = 

0.1, and η0 = 0.01. We can observe that, a sc 

increases, the difference increases. In addition, 

more SUs in the system lead to larger difference. 
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The PU outage probability normalized by η after 

convergence and its upper bound derived in (42) 

are also shown for comparison in Figure 6. We  can 

see that by setting c small enough, the resulting PU 

outage probability is very close to its requirement. 

The result also indicates that, for a larger value of 

c, it may be helpful to have an outer loop to adjust 

the value of η u as in Figure 2to satisfy the original 

target protection constraint defined b y η. Another 

way to guarantee that the PU outage probability is 

below the predefined threshold η along the 

convergence process is to use large enough initial 

points  λ i(0) (but smaller than ¯λ = 1c log( 1η ) 

such that the update of λ i(k) is bounded).Next, we 

evaluate the performance of our proposed DDPC in 

a more practical setting. We set up a system with 

multiple SU pairs and one PU pair with their 

locations shown in Figure 3. For SUs, only the 

transmitters are shown. 

 

 
  

The duration for one outage probability update is 

set to T = 200. Note here that the noise caused by 

the estimation of (26) is biased. To test the 

proposed algorithm under a more dynamic system, 

we also allow the distance of the PU-Rx from the 

PU-T x (d0) to jump from 500 meters to 600 meters 

at the middle of the simulation outage. As a result, 

the outage probability perceived by the PU-Rx 

without SU transmission changes from η0= 

0.0186to 0.0381 and the margin for SU 

transmission is reduced .In Figure 7, we plot  

update process of the “Lagrangian multiplier”  λ i 

for  η u = 0.10. We can observe the convergence 

behavior of the proposed algorithm. Although we 

encounter noisy observations/estimations during 

outage sensing, the algorithm converges smoothly 

and fairly as each SU eventually acquires similar 

value of λ i. Also note that there exists a small gap 

between the convergent point and λ∗. This 

difference is caused by the bias in the estimation of 

the outage probability (in log-scale). This gap can 

be reduced by adopting a longer observation 

period, i.e., a greater T. However, this may render 

the update less agile and less sensitive to the 

system dynamics .In Figure 8 , we plot the outage 

probability perceived by the PU as a function of 

time by setting η u = 0.10 and η u =0.09 for our 

DDPC algorithm. Note that the time index in 

Figure 8 aligns with that in Figure 7. In other 

words, the outage probability shown is along the 

convergence process .We can observe that with η u 

= 0.10, the outage probability perceived by the PU 

over the whole simulation time is only slightly 

higher than required. As discussed earlier, this off 

set can be overcome by applying an outer-loop 

control mechanism to adjust the target outage 

probability requirement η u in place of η used in 

our algorithm. This is confirmed by observing that 

the PU outage probability is under the constraint 

almost all the time with η u = 0.09.In Figure 9, we 

show the total SU utility i log(1+hiPi)achieved by 

the DDPC algorithm as a function of time100λitime  

To test at the middle of the simulation the proposed 

algorithm under a more dynamic system, we also 

allow the distance of the PU-Rx from the PU-T x 

(d0) to jump from 500 meters to 600 meters outage. 

As a result, the outage probability perceived by the 

PU-Rx without SU transmission changes from η0 = 

0.0186to 0.0381 and the margin  clearly if the 

graph G' is properly colored by the minimum 

number of colors, then the algorithm may set as 

few elements as possible to the edges of G , since 

that coloring of G' ensures that the same elements 

are set properly as many times as possible. 

Unfortunately, the problem of properly coloring the 

vertices of an undirected graph with the minimum 

number of colors, is known to be NP-hard [11], that 

is, mathematicians believe that no polynomial time 

algorithm exists for solving that problem. We 

believe that this is also the status of our proposed 

Resources Allocation Problem. .  

 
Fig. 4. Convergence behavior of the proposed DDPC 

algorithm with noisy Observation. 
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 Fig. 5. Difference between the convergent point λ s 

and the optimal Lagrangian multiplier λ o .For 

comparison, we plot the maximum SU utility of the 

transformed convex optimization problem (9) 

obtained by utility function approximation. We also 

plot the lower and upper bounds on the true optimal 

total SU utility of the original optimization problem 

(5) achieved by transforming the outage probability 

constraint using the certainty-equivalent margin 

(CEM) model as in [25]  and [11]. The idea is to 

retain the log(1+hiPi) utility function for each SU 

but use a lower/upper bound on the outage 

probability expression. The solutions to all the 

transformed convex optimization problems are 

obtained using the Mat lab-based convex 

optimization modeling system CVX [37]. We can 

see that the gap in the total utility achieved by the 

three approximation methods (utility 

approximation, lower bound and upper bound with 

CEM model) are negligible .We can also observe 

that the total utility achieved by the SUs with η u = 

0.10 (η u = 0.09) may be slightly above (or below) 

the optimal utility for the original problem in (5). 

This is caused by the slightly higher (or lower) 

outage probability produced by the DDPC 

algorithm. The advantage of the DDPC lies in its 

distributed implementation. 

 

 

The PBS is located at the center of a circular cell 

whose radius is 2 Km. The SB Sis located 0.5 Km 

from the PBS and cover sacircular cell with a 

radius of 1 Km. There are three active SUs in the 

cognitive cell, deployed at d ¼½150; 200; 350_ m 

from SBS and D¼½550; 300; 400_ m from the 

PBS. The power range for each SU is ½0:001; 1_ 

Watts. Again, since we have only one PBS, we 

omit the index j from the notations. 

                     

                      CONCLUSION 

In this work, we proposed a discounted distributed 

power control (DDPC) algorithm for multiple SUs 

in a cognitive radio network. The proposed 

algorithm exploits the outage information from the 

PU-Rx on the PU feedback channel as an external 

inference signal for coordination among 

distributed. We proved the convergence property of 

the proposed DDPC algorithm for two secondary 

user case, and provided the promising convergence 

results for scenarios with more than two SUs. This 

distributed SU power control can tackle 

synchronousness issue in a typical cognitive radio 

network and approximate the optimal solution 

without PU cooperation, central controller/monitor, 

or inter-SU message passing. In future works, we 

plan to generalize our frame work to include the 

more dynamic scenarios involving adaptive PU 

sand SUs. We are also keen to assess the trade-off 

between the security concerns and the revenue 

from cognitive users by allowing some unencrypted 

link control feedback among the PU pairs. 
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