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Abstract— We present a combined structure for 

dealing with exact point-of-interest (POI) queries in 

dynamic continental road networks within interactive 

applications. We show that partition-based 

algorithms developed for point-to-point shortest path 

computations can be naturally extended to handle 

augmented queries such as finding the closest cafe or 

the best place of work to stop on the way home, 

always position POIs according to a user-defined cost 

function. Our solution allows different trade-offs 

between indexing effort (time and space) and query 

time. Our most flexible variant allows the road 

network to change regularly (to account for travel 

information or modified cost functions) and the set of 

POIs to be specified at query time. Even in this fully 

dynamic scenario, our key is fast enough for 

interactive applications on continental road networks. 

Keyword—Points-of-interest, dynamic road networks, 

and indexing techniques. Continental road network. 

I. INTRODUCTION 

A point of interest, or POI, is a specific point 

location that someone may find useful or 

interesting. An example is a point on the Earth 

representing the location of the Space Needle, or a 

point on Mars representing the location of the 

mountain, Olympus Mons. Most consumers use the 

term when referring to hotels, campsites, fuel 

stations or any other categories used in modern 

(automotive) navigation systems. In medical fields 

such as histology/pathology/histopathology, points 

of interest are selected from the general 

background in a field of view. 

 

A POI is a human construct, describing what can 

be found at a Location. As such a POI typically has 

a fine level of spatial granularity. A POI has the 

following attributes. A name, A current Location 

(see the commentary below on the loose coupling 

of POI and Location),A category and/or type, A 

unique identifier, A URI, An address, Contact 

information. 

 

A POI has a loose coupling with a Location; in 

other words, a POI can move. When this occurs, 

the loose coupling with the previous location is 

removed and, providing the POI continues to exist, 

it is then coupled with its new Location. This can 

happen when the human activity at the POI 

relocates, such as when your local coffee shop 

relocates to a new address. It's still your local 

coffee shop, it's now found at a different Location. 

 

A POI has temporal boundaries; it starts when the 

human activity at that Location commences and 

ends when human activity ceases, such as when a 

company or organisation goes out of business. 

 

Present map services and other spatial systems 

must support a wide range of applications. Besides 

compute optimal (with respect to a cost function 

such as travel times or time in traffic) point-to-

point routes, advanced queries like “find the closest 

Thai restaurant to my current location” or “what is 

the best place to shop for groceries on my way 

home” need to be supported as well. All these 

location services depend on a location and a set of 

points-of-interest (POIs) with certain properties 

(such as open times, category, or personal 

preferences). Given a location, we want to rank the 

POIs to decide which ones to report first. If one 

wants to order them by the actual driving (or 

walking) time from a given location, all these 

problems could be solved with one or more calls to 

a standard graph search algorithm, such as 

Dijkstra’s [2]. For continental road networks, 

however, this takes several seconds for long-range 

queries [3], too slow for interactive applications. 

For better performance, more sophisticated 

solutions are needed. 

 

An indexing step can associate POI information 

with these hubs, allowing for quick queries. These 

methods work reasonably well, but have major 

drawbacks, including nontrivial preprocessing 

effort and excessive space requirements. 

 

Most importantly, hierarchical methods are not 

robust to changes in the cost function even small 

changes(such as setting a high cost for making a U-

turn, i.e., turning into the opposite direction on the 

same road segment) can have a significant adverse 

effect on their performance. 

 

As long as queries are fast enough, considerations 

such as flexibility the types of queries supported), 

low space consumption, predictable performance, 
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realistic modeling, and robustness (with respect to 

the cost function) are more important for map 

services than raw speed. CRP excels in this regard 

because it moves the metric dependent portion of 

the preprocessing to a metric customization phase, 

which runs in roughly a second on a continental 

road network using a standard server. This enables 

support for real-time traffic and personalized cost 

functions. Unlike hierarchical approaches, CRP 

supports realistic modeling (turn costs and 

restrictions) with little overhead and is much more 

robust to the choice of the optimization function. 

Not coincidentally, the routing engine for Bing 

Maps is based on CRP. 

 

II. PRELIMINARIES  

A. Road Networks and Shortest Paths 

A road network is usually modeled as a directed 

graph G = (V; A), where each vertex v 2 V 

represents an intersection of the road network and 

each arc (v; w) 2 A represents a road segment. A 

metric (or cost function) ` : A ! N maps each arc to 

a positive length (or cost). For a more realistic 

model, we also take turn costs (and restrictions) 

into account. We think of each  vertex v as having 

one entry point for each of its incom-ing arcs, and 

one exit point for each outgoing arc. We extend the 

concept of metric by also associating a turn table Tv 

to each vertex v. In this matrix, entry Tv[i; j] 

specifies the cost of turning from the i-th incoming 

arc to the j-th outgoing arc. Such modeling is 

essential for a realistic map service to properly 

account for turn restrictions and to avoid unnatural 

routes with frequent U-turns or turns against traffic. 

 

In the point-to-point shortest path problem, we are 

given a source location s and a target location t, and 

our goal is to find the minimum-cost path from s to 

t (considering both arc and turn costs). We denote 

the length of this path by dist (s; t). As in real-

world road networks, s and t are not necessarily 

vertices, but points located anywhere along the 

arcs. These can be thought of as addresses within 

streets. 

 

Without turns, this problem can be solved by Dijk-

stra’s algorithm [3], which scans vertices in 

increasing order of distance from s and stops when 

t is pro-cessed. We can run Dijkstra’s algorithm on 

the turn-aware graph by associating distance labels 

to entry points instead of vertices [18]. An alterna-

tive approach (often used in practice) is to operate 

on an expanded graph G
0
, where each vertex 

corresponds to an entry point in G, and each arc 

represents the concatenation of a turn and an arc in 

G. This allows standard (non-turn-aware) 

algorithms to be used, but roughly triples the graph 

size [18]. In contrast, the turn-aware representation 

is almost as compact as the simplified one (with no 

turns at all), since identical turn tables can be 

shared among vertices. For tech-nical reasons, 

however, hierarchical methods such as contraction 

hierarchies [14] tend to have much worse 

performance on this representation [18]. 

 

B. Points of Interest 

We focus on applications that deal with POIs, such 

as tourist attractions or store locations. In 

computational terms, each POI p is simply a 

location along an arc of the road network. We say 

that such an arc contains a POI, or simply that it is 

a POI arc. We denote the set of candidate POIs (for 

a given query) as P. All problems may also be 

parameterized by an integer k (with 1 k jPj) 

indicating the maximum number of POIs that are to 

be reported in any query. 

 

 

Fig. 1: Viewing point of interest pointing 

We consider two problems with these inputs. In the 

k-closest POI problem, we are given a source s and 

must compute the set of k POIs pi from P that 

minimize dist (s; pi). In the k-best via problem, we 

are given a source s and a target t, and must 

compute the set of k  POIs pi from P that 

minimize dist (s; pi)+ dist (pi; t). To solve these 

problems, we propose algorithms that work in up to 

four phases, each potentially taking the outputs of 

previous phases as additional inputs. The first 

phase is metric-independent preprocess-ing, which 

takes as input only the graph topology. The second 

phase, customization, takes as input the metric 

(cost function) that defines the cost of each arc. 

The third phase, selection (or indexing), processes 

the set P of candidate POIs, given k. Finally, the 

query phase takes as input a source s (and 

potentially a target t) and computes the best POIs 

among those in P. Some algorithms may conflate 

two or more phases into one. Different applications 

may impose different con-straints on each phase. 

For example, in the static variant of our problems, 

the metric (cost function) is known in advance, and 

does not change often. In the dynamic version, the 

cost function can change frequently (to account for 

real-time traffic information or individual user 

preferences, for example). This en-ables a richer 

user experience, but restricts the amount of time the 

customization phase can spend. 
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Orthogonally, our problem may be offline or 

online, depending on when the set P of candidate 

POIs is known to the routing engine. In the offline 

version, the set P is known in advance. This 

happens in a typical store locator feature found in 

websites for large chains: the set of all stores is 

known in advance, and users just want the closest 

to their current location.  

 

C. Customizable Route Planning 

We now explain the multilevel overlays approach 

for computing point-to-point shortest paths on road 

networks. It computes multiple nested over-lay 

graphs, each consisting of a subset of the original 

vertices with additional arcs created to preserve the 

distances between them. More concretely, we focus 

on the customizable route planning (CRP) 

algorithm [18], [19], the fastest variant of this 

method. 

 

III. ONLINE QUERIES 

 

1. Generalized Multilevel Dijkstra 

Before getting to specific applications, we 

introduce a general framework to analyze elaborate 

queries. We consider queries in which distances to 

several points (not just s and t) are relevant; these 

are the POIs. 

We consider an abstract setting in which each non-

trivial cell (on level 1 or higher) is labeled either 

safe or unsafe. (Level-0 cells, corresponding to 

individual vertices, are always safe.) We define a 

safety assignment to be valid if no unsafe cell has a 

safe super cell. (In other words, all ancestors of an 

unsafe cell must be unsafe as well.) We say that a 

cell is active if it is safe but has an unsafe super 

cell. We say that a vertex is active if it is a 

boundary vertex of an active cell, and that an arc is 

active if both of its endpoints are active. The active 

graph consists of all active vertices and arcs. Note 

that every vertex in the original graph belongs to 

exactly one active cell. If the input graph is 

disconnected, so is the active graph. 

 

In this setting, a generalized MLD search consists 

of running Dijkstra’s algorithm on the active graph. 

We define forward, backward, and bidirectional 

versions of this in the natural way. 

Fig 2 : Active graph and CRP path for an s–t query 

using the 2-level partition from Figure 1. All cells and 

vertices drawn are active; active arcs are omitted 

 

Fig. 3: Active graph for a set of POIs. The 2-level 

partition is the one from Figure 1. Active cells and 

vertices are drawn, but active arcs are omitted. 

With the notion of the active graph at hand, the 

standard CRP s–t point-to-point query can be de-

scribed as a generalized MLD search in which only 

the nontrivial cells that contain s and t are unsafe. 

Figure 5 gives an example. To analyze more 

complex queries (beyond point-to-point), we first 

show that the active graph is an overlay for all 

active vertices. 

2. One-to-Many Queries 

We first consider the one-to-many problem: given a 

source s and a set of POIs P, compute the distance 

from s to all vertices in P (not just the closest). 

 

The trivial solution to this problem is to run Dijk-

stra’s algorithm from s (in G) until all vertices in P 

are scanned. We can use the multilevel approach to 

accelerate this algorithm, with the help of Theorem 

1. During the selection phase, we mark all 

nontrivial cells containing either a POI or s as 

unsafe (see Figure 6); we then run a generalized 

MLD search from s with this assignment. The final 

distance labels of the POIs are the answer to the 

one-to-many problem. 

3. Finding Closest POIs 

One-to-many queries can also be applied to the k-

closest POI problem. We simply run the selection 

phase on the set P of POIs, run a one-to-many 

query, and then pick the k POIs with the smallest 

distances. 

 

In practice, we can do better by running a restricted 

version of the one-to-many query. Since we scan 

POIs in increasing order of distance from s, we can 

stop as soon as we are about to scan the k-th POI. 

As our experiments will show, this technique is 
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surprisingly effective in practice, and POI queries 

(for small values of k) tend to be even faster than 

point-to-point queries, since they are usually local. 

Although in adversarial POI distributions the 

pruned search is not much faster than a full one-to-

many query, our experiments will show that 

automatic descent is quite efficient for distributions 

that occur in practice. 

4. Best Via POIs 

We now address the k-best via POIs problem. 

Given a source s, a target t, and a set P of POIs, we 

must find the k POIs pi 2 P that minimize dist (s; 

pi)+dist (pi; t). 

 

This can be solved with two one-to-many queries. 

We use a forward query to find the distances from s 

to P, and a backward query to find the distances 

from P to t. This provides all the information 

necessary to compute dist (s; pi) + dist (pi; t) for 

every POI pi. 

IV. INDEX-BASED APPROACHES  

We now consider an index-based approach. Com-

pared to automatic descent, it provides a different 

trade-off: much faster queries, but worse selection 

times and space requirements. As our experiments 

will show, selection is still quite fast (a few 

seconds sequentially), making the indexing 

applicable not only offline scenarios, but also in 

some online scenarios. 

 

Recall that automatic descent may be slow because 

it must visit all cells that contain POIs, and they 

may be numerous. The index-based approach 

avoids this by precomputing (at selection time), for 

every cell containing a POI, the information that 

the automatic descent approach would learn at 

query time. This in-formation (the index) is then 

associated with elements (arcs or boundary 

vertices) of the cell itself. A query can then gather 

all the information it needs without descending into 

the cell. Since the selection phase no longer needs 

to mark POI cells as unsafe, the number of vertices 

visited during the POI query is similar to that of a 

point-to-point query, regardless of the number (or 

location) of POIs in the system. 

We propose two variants of this approach: single-

source indexing for the closest POI problem, and 

double-source indexing for the best via path 

problem 

A. Single-Source Indexing 

We first consider single-source indexing, an 

acceleration to the closest POI problem. This idea 

is related (but somewhat different) to the bucket-

based approach developed in the context of one-to-

many computa-tions using hierarchical speedup 

techniques (see Sec-tion 5 for more details). This 

section discusses how our approach as applied to 

multilevel overlays. To index a cell C, we associate 

with each entry point v of C a bucket B(v) 

containing the k POIs p 2 P within cell C 

minimizing the distance dist (v; p), together with 

the distances themselves; if C has fewer than k 

POIs, the bucket includes all. See Figure 4. 

 

 

 

 

 

 

 

 

 
Fig.4. Single-source indexing: we add p to the buckets 

of the entry vertices of p’s cells. Level-1 cells are 

indicated by dotted lines, solid lines show level-2 cells. 

 

With this index in place (its efficient construction 

will be discussed shortly), we can accelerate k-

closest POI queries from any source s. The query is 

a forward generalized MLD search from s in which 

only the cells containing s are marked as unsafe. It 

is a standard search, with minor adjust-ments. First, 

we maintain a list L (initially empty) containing the 

best k candidate POIs found by the al-gorithm so 

far. Moreover, before scanning each vertex v, we 

examine each entry (pi; dist (v; pi)) in the associ-

ated bucket B(v). We compute the tentative 

distance from s to pi through v (given by dist (s; 

v)+dist (v; pi)), and add pi to L if it is among the 

lowest k seen so far. (This involves adding a new 

entry or replacing another, possibly associated with 

pi itself.) 

B. Double-Source Indexing 

We now discuss double-source indexing, a strategy 

to accelerate k-best via node queries. 

Unlike in the single-source scenario, where we as-

sociate buckets with vertices, double-source 

indexing associates a bucket B(v; w) to each arc (v; 

w) in the graph. If (v; w) is an original arc in G, 

B(v; w) contains the POIs assigned it. If (v; w) is a 

shortcut for a cell C, B(v; w) has the best k POIs pi 

within C for (v; w), i.e., it contains what would be 

the k via POIs for v–w if C were the entire graph. 

In either case, the entry corresponding to POI p in 

bucket B(v; w) also holds the actual length of the 

shortest v–p–w path (restricted to the cell). See 

Figure 8 for an illustration. As Section 5 will 

explain, this approach is related to the double-hub 
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indexing strategy [34] introduced for hierarchical 

speedup techniques. 

1. Queries 

An indexed s–t via query works as follows. First, 

we mark only the nontrivial cells containing s and t 

as unsafe, then execute two simultaneous general-

ized MLD searches: a forward search from s and a 

backward search from t (we can alternate between 

the two searches in any way). For each active 

vertex v, we will have two distance labels (ds(v) 

and dt(v)), representing the exact distances from s 

and to t, re-spectively. These labels are initially 

infinite, except for ds(s) and dt(t) (which are zero). 

During the algorithm, we maintain a list L with the 

k POIs leading to the shortest via paths found so 

far. 

2. Indexing 

We now turn our attention to the selection 

(indexing) phase. For each shortcut (v; w) in the 

overlay graph, we must build a bucket B(v; w) 

containing the k best via points between v and w 

within (v; w)’s cell. 

The straightforward approach is POI-based index-

ing. We initialize all buckets as empty. We then 

pro-cess each original POI arc (a; b) by running a 

forward MLD search from b and a backward MLD 

search from a; both searches can be pruned at the 

boundary of the  level-L cell containing (a; b) (the 

top level does not need to be visited in full). For 

each cell C that contains (a; b) (of which there are 

up to L), we consider all pairs (v; w) of entry and 

exit points in C, adding (a; b) to B(v; w) with value 

dist C (v; a) + `(a; b) + dist C (b; w). (Here dist C 

indicates the distance restricted to cell C.) Since it 

requires a separate search from each POI arc, POI-

based indexing can be costly. 

3. Hybrid Approaches 

The indexing techniques introduced in Sections 1 

and 2 have faster queries than the automatic 

descent approach introduced in Section 3, at the 

cost of significant more effort spent at selection 

time and higher space usage. For a smoother trade-

off, we can use a hybrid approach: index only the 

lower q levels (for some q), and use automatic 

descent above that. The query algorithm is still 

generalized MLD, but with POI cells marked as 

unsafe only if they are above level q (or contain s 

or t). Indexed cells are safe. This approach works 

for the k-closest POI and k-best via POI problems. 

Finally, the fastest point-to-point algorithm, HL, 

computes the distance between two random points 

in well below one microsecond [15], [16]. Since 

these queries are so fast, it is often feasible to run 

HL queries from s (and t) to all POIs, and then, like 

for RPHAST, pick the k best POIs among those. 

This approach can be accelerated by preselecting a 

(conservative) set of POIs based on Euclidean 

distances. 

4. Applications 

The applications for POI are extensive. As GPS-

enabled devices as well as software applications 

that use digital maps become more available, so too 

the applications for POI are also expanding. Newer 

digital cameras for example can automatically tag a 

photograph using Exif with the GPS location where 

a picture was taken; these pictures can then be 

overlaid as POI on a digital map or satellite image 

such as Google Earth. Geocaching applications are 

built around POI collections. In Vehicle tracking 

systems POIs are used to mark destination points 

and/or offices to those users of GPS tracking 

software would easily monitor position of vehicles 

according to POIs. 

V. EXPERIMENTS 

We now present an experimental evaluation of our 

algorithms. Our code is written in C++ and 

compiled with Microsoft Visual C++ 2012. Our 

test machine runs Windows Server 2008 R2 and 

has 96 GiB of DDR3-1333 RAM (of which we use 

less than 16 GiB) and two 6-core Intel Xeon X5680 

3.33 GHz CPUs, each with 6 64 KB of L1, 6 256 

KB of L2, and 12 MB of shared L3 cache. All runs 

are single-threaded. 

Time Complexity:  

Time complexity of topological sorting is O(V+E). 

After finding topological order, the algorithm 

process all vertices and for every vertex, it runs a 

loop for all adjacent vertices. Total adjacent 

vertices in a graph is O(E). So the inner loop runs 

O(V+E) times. Therefore, overall time complexity 

of this algorithm is O(V+E). 
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TABLE 1 

 PREPROCESS  CUSTOM  SELECTION  4-CLOSEST  ALL 
 space  time  space time  space time  #scanned time  #scanned time 
algorithm [MiB]  [s]  [MiB] [s]  [MiB] [s]  vertices [ms]  vertices [ms] 

 —  —  — —  — — 7098 1.40 29 297 561 13 347.12 
Greedy Algorithm 
 
Dijkstra —  —  — —  — — 7096 1.95 29 297 531 13 367.92 
RPHAST 1 519 8 170.1  — — 32.18 0.28 651 974 11.98 651 974 11.95 
HL 64 396 11 652.3  — —  — —  — 7.26  — 7.23 
BHL 64 396 11 652.3  — — 13.72 0.21  — 0.01  — 2.16 
CRP no index 3 119 5 190.6 71.0 3.9 0.00 0.01 1 626 0.64 12 319 771 8 081.23 
CRP reverse index 3 119 5 190.6 71.0 3.9 33.27 9.12 443 0.17 3 933 6.77 
CRP bulk-4 index 3 119 5 190.6 71.0 3.9 5.73 2.20 443 0.17  — — 
CRP reverse index-2 3 119 5 190.6 71.0 3.9 3.53 1.78 451 0.17 198 602 99.31 
CRP bulk-4 index-2 3 119 5 190.6 71.0 3.9 3.53 1.69 451 0.17  — — 

 

REFERENCES 

[1] Daniel Delling, Renato F. Werneck, "Customizable 

Point-of-Interest Queries in Road Networks", IEEE 

TRANSACTIONS ON KNOWLEDGE AND 

DATA ENGINEERING, VOL. X, NO. Y, 

JANUARY 2015. 

[2] E. W. Dijkstra, “A Note on Two Problems in 

Connexion with Graphs,” Numerische Mathematik, 

vol. 1, pp. 269–271, 1959.  

[3] D. Delling, A. V. Goldberg, A. Nowatzyk, and R. F. 

Werneck, “PHAST: Hardware-Accelerated Shortest 

Path Trees,” Journal of Par. and Dist. Computing, 

vol. 73, no. 7, pp. 940–952, 2013.  

[4] Z. Chen, H. T. Shen, X. Zhou, and J. X. Yu, 

“Monitoring Path Nearest Neighbor in Road 

Networks,” in SIGMOD. ACM Press, 2009, pp. 

591–602.  

[5] H.-J. Cho and C.-W. Chung, “An Efficient and 

Scalable Ap-proach to CNN Queries in a Road 

Network,” in VLDB, 2005, pp. 865–876.  

[6] H. Hu, D. Lee, and J. Xu, “Fast Nearest Neighbor 

Search on Road Networks,” in EDBT, ser. LNCS, 

vol. 3896. Springer, 2006, pp. 186–203.  

[7] C. S. Jensen, J. Kolar,´ T. B. Pedersen, and I. 

Timko, “Nearest Neighbor Queries in Road 

Networks,” in SIGSPATIAL GIS. ACM Press, 

2003, pp. 1–8.  

[8] M. Kolahdouzan and C. Shahabi, “Voronoi-Based 

K Nearest Neighbor Search for Spatial Network 

Databases,” in VLDB, 2004, pp. 840–851.  

[9] H. Samet, The Design and Analysis of Spatial Data 

Structures. Addison-Wesley, 1989.  

[10] S. Shekhar and J. S. Yoo, “Processing In-Route 

Nearest Neigh-bor Queries: A Comparison of 

Alternative Approaches,” in SIGSPATIAL GIS. 

ACM Press, 2003, pp. 9–16.  

[11] S.-H. Shin, S.-C. Lee, S.-W. Kim, J. Lee, and E. G. 

Lim, “K-Nearest Neighbor Query Processing 

Methods in Road Net-work Space: Performance 

Evaluation,” in ICINC, 2009, pp. 958–962.  

[12] D. Delling, A. V. Goldberg, and R. F. Werneck, 

“Faster Batched Shortest Paths in Road Networks,” 

in ATMOS, ser. OASIcs, vol. 20, 2011, pp. 52–63.  

[13] R. Geisberger, “Advanced Route Planning in 

Transportation Networks,” Ph.D. dissertation, KIT, 

February 2011.  

[14] R. Geisberger, P. Sanders, D. Schultes, and C. 

Vetter, “Exact Routing in Large Road Networks 

Using Contraction Hierar-chies,” Transportation 

Science, vol. 46, no. 3, pp. 388–404, 2012.  

[15] I. Abraham, D. Delling, A. V. Goldberg, and R. F. 

Werneck, “A Hub-Based Labeling Algorithm for 

Shortest Paths on Road Networks,” in SEA, ser. 

LNCS, vol. 6630. Springer, 2011, pp. 230–241. 

[16] “Hierarchical Hub Labelings for Shortest Paths,” in 

ESA, ser. LNCS, vol. 7501. Springer, 2012, pp. 24–

35.  

[17] R. Bauer, D. Delling, P. Sanders, D. Schieferdecker, 

D. Schultes, and D. Wagner, “Combining 

Hierarchical and Goal-Directed Speed-Up 

Techniques for Dijkstra’s Algorithm,” ACM JEA, 

vol. 15, no. 2.3, pp. 1–31, 2010.  

[18] D. Delling, A. V. Goldberg, T. Pajor, and R. F. 

Werneck, “Customizable Route Planning,” in SEA, 

ser. LNCS, vol. 6630. Springer, 2011, pp. 376–387.  

[19] D. Delling and R. F. Werneck, “Faster 

Customization of Road Networks,” in SEA, ser. 

LNCS, vol. 7933. Springer, 2013, pp. 30–42.  

[20] M. Holzer, F. Schulz, and D. Wagner, “Engineering 

Multi-Level Overlay Graphs for Shortest-Path 

Queries,” ACM JEA, vol. 13, no. 2.5, pp. 1–26, 

December 2008.  

International Journal of Advanced and Innovative Research (2278-7844) / # 117 / Volume 5 Issue 2

   © 2015 IJAIR. All Rights Reserved                                                                               117


