
Rapid Modified To Order in Road Network Using

Customer Point of Interest
M. Anbu#1, R. Kanniyarasu #2, S.P. Santhoshkumar #3, V. Anuradha#4

UG Scholar, Dept of CSE, Shree Sathyam College of Engineering and Technology,Sankari, India.

Assistant Professor, Dept of CSE, Shree Sathyam College of Engineering and Technology,Sankari, India

Assistant Professor, Dept of CSE, Shree Sathyam College of Engineering and Technology,Sankari, India

HOD, Dept of CSE, Shree Sathyam College of Engineering and Technology,Sankari, India
1anbuaisha848@gmail.com,2 kanniyarasu.k@gmail.com

3spsanthoshkumar16@gmail.com, 4kavkamanu@gmail.com@gmail.com

Abstract— We present a combined structure for

dealing with exact point-of-interest (POI) queries in

dynamic continental road networks within interactive

applications. We show that partition-based

algorithms developed for point-to-point shortest path

computations can be naturally extended to handle

augmented queries such as finding the closest cafe or

the best place of work to stop on the way home,

always position POIs according to a user-defined cost

function. Our solution allows different trade-offs

between indexing effort (time and space) and query

time. Our most flexible variant allows the road

network to change regularly (to account for travel

information or modified cost functions) and the set of

POIs to be specified at query time. Even in this fully

dynamic scenario, our key is fast enough for

interactive applications on continental road networks.

Keyword—Points-of-interest, dynamic road networks,

and indexing techniques. Continental road network.

I. INTRODUCTION

A point of interest, or POI, is a specific point

location that someone may find useful or

interesting. An example is a point on the Earth

representing the location of the Space Needle, or a

point on Mars representing the location of the

mountain, Olympus Mons. Most consumers use the

term when referring to hotels, campsites, fuel

stations or any other categories used in modern

(automotive) navigation systems. In medical fields

such as histology/pathology/histopathology, points

of interest are selected from the general

background in a field of view.

A POI is a human construct, describing what can

be found at a Location. As such a POI typically has

a fine level of spatial granularity. A POI has the

following attributes. A name, A current Location

(see the commentary below on the loose coupling

of POI and Location),A category and/or type, A

unique identifier, A URI, An address, Contact

information.

A POI has a loose coupling with a Location; in

other words, a POI can move. When this occurs,

the loose coupling with the previous location is

removed and, providing the POI continues to exist,

it is then coupled with its new Location. This can

happen when the human activity at the POI

relocates, such as when your local coffee shop

relocates to a new address. It's still your local

coffee shop, it's now found at a different Location.

A POI has temporal boundaries; it starts when the

human activity at that Location commences and

ends when human activity ceases, such as when a

company or organisation goes out of business.

Present map services and other spatial systems

must support a wide range of applications. Besides

compute optimal (with respect to a cost function

such as travel times or time in traffic) point-to-

point routes, advanced queries like “find the closest

Thai restaurant to my current location” or “what is

the best place to shop for groceries on my way

home” need to be supported as well. All these

location services depend on a location and a set of

points-of-interest (POIs) with certain properties

(such as open times, category, or personal

preferences). Given a location, we want to rank the

POIs to decide which ones to report first. If one

wants to order them by the actual driving (or

walking) time from a given location, all these

problems could be solved with one or more calls to

a standard graph search algorithm, such as

Dijkstra’s [2]. For continental road networks,

however, this takes several seconds for long-range

queries [3], too slow for interactive applications.

For better performance, more sophisticated

solutions are needed.

An indexing step can associate POI information

with these hubs, allowing for quick queries. These

methods work reasonably well, but have major

drawbacks, including nontrivial preprocessing

effort and excessive space requirements.

Most importantly, hierarchical methods are not

robust to changes in the cost function even small

changes(such as setting a high cost for making a U-

turn, i.e., turning into the opposite direction on the

same road segment) can have a significant adverse

effect on their performance.

As long as queries are fast enough, considerations

such as flexibility the types of queries supported),

low space consumption, predictable performance,

International Journal of Advanced and Innovative Research (2278-7844) / # 112 / Volume 5 Issue 2

 © 2015 IJAIR. All Rights Reserved 112

mailto:anbuaisha848@gmail.com
mailto:anbu@gmail.com

realistic modeling, and robustness (with respect to

the cost function) are more important for map

services than raw speed. CRP excels in this regard

because it moves the metric dependent portion of

the preprocessing to a metric customization phase,

which runs in roughly a second on a continental

road network using a standard server. This enables

support for real-time traffic and personalized cost

functions. Unlike hierarchical approaches, CRP

supports realistic modeling (turn costs and

restrictions) with little overhead and is much more

robust to the choice of the optimization function.

Not coincidentally, the routing engine for Bing

Maps is based on CRP.

II. PRELIMINARIES

A. Road Networks and Shortest Paths

A road network is usually modeled as a directed

graph G = (V; A), where each vertex v 2 V

represents an intersection of the road network and

each arc (v; w) 2 A represents a road segment. A

metric (or cost function) ` : A ! N maps each arc to

a positive length (or cost). For a more realistic

model, we also take turn costs (and restrictions)

into account. We think of each vertex v as having

one entry point for each of its incom-ing arcs, and

one exit point for each outgoing arc. We extend the

concept of metric by also associating a turn table Tv

to each vertex v. In this matrix, entry Tv[i; j]

specifies the cost of turning from the i-th incoming

arc to the j-th outgoing arc. Such modeling is

essential for a realistic map service to properly

account for turn restrictions and to avoid unnatural

routes with frequent U-turns or turns against traffic.

In the point-to-point shortest path problem, we are

given a source location s and a target location t, and

our goal is to find the minimum-cost path from s to

t (considering both arc and turn costs). We denote

the length of this path by dist (s; t). As in real-

world road networks, s and t are not necessarily

vertices, but points located anywhere along the

arcs. These can be thought of as addresses within

streets.

Without turns, this problem can be solved by Dijk-

stra’s algorithm [3], which scans vertices in

increasing order of distance from s and stops when

t is pro-cessed. We can run Dijkstra’s algorithm on

the turn-aware graph by associating distance labels

to entry points instead of vertices [18]. An alterna-

tive approach (often used in practice) is to operate

on an expanded graph G
0
, where each vertex

corresponds to an entry point in G, and each arc

represents the concatenation of a turn and an arc in

G. This allows standard (non-turn-aware)

algorithms to be used, but roughly triples the graph

size [18]. In contrast, the turn-aware representation

is almost as compact as the simplified one (with no

turns at all), since identical turn tables can be

shared among vertices. For tech-nical reasons,

however, hierarchical methods such as contraction

hierarchies [14] tend to have much worse

performance on this representation [18].

B. Points of Interest

We focus on applications that deal with POIs, such

as tourist attractions or store locations. In

computational terms, each POI p is simply a

location along an arc of the road network. We say

that such an arc contains a POI, or simply that it is

a POI arc. We denote the set of candidate POIs (for

a given query) as P. All problems may also be

parameterized by an integer k (with 1 k jPj)

indicating the maximum number of POIs that are to

be reported in any query.

Fig. 1: Viewing point of interest pointing

We consider two problems with these inputs. In the

k-closest POI problem, we are given a source s and

must compute the set of k POIs pi from P that

minimize dist (s; pi). In the k-best via problem, we

are given a source s and a target t, and must

compute the set of k POIs pi from P that

minimize dist (s; pi)+ dist (pi; t). To solve these

problems, we propose algorithms that work in up to

four phases, each potentially taking the outputs of

previous phases as additional inputs. The first

phase is metric-independent preprocess-ing, which

takes as input only the graph topology. The second

phase, customization, takes as input the metric

(cost function) that defines the cost of each arc.

The third phase, selection (or indexing), processes

the set P of candidate POIs, given k. Finally, the

query phase takes as input a source s (and

potentially a target t) and computes the best POIs

among those in P. Some algorithms may conflate

two or more phases into one. Different applications

may impose different con-straints on each phase.

For example, in the static variant of our problems,

the metric (cost function) is known in advance, and

does not change often. In the dynamic version, the

cost function can change frequently (to account for

real-time traffic information or individual user

preferences, for example). This en-ables a richer

user experience, but restricts the amount of time the

customization phase can spend.

International Journal of Advanced and Innovative Research (2278-7844) / # 113 / Volume 5 Issue 2

 © 2015 IJAIR. All Rights Reserved 113

Orthogonally, our problem may be offline or

online, depending on when the set P of candidate

POIs is known to the routing engine. In the offline

version, the set P is known in advance. This

happens in a typical store locator feature found in

websites for large chains: the set of all stores is

known in advance, and users just want the closest

to their current location.

C. Customizable Route Planning

We now explain the multilevel overlays approach

for computing point-to-point shortest paths on road

networks. It computes multiple nested over-lay

graphs, each consisting of a subset of the original

vertices with additional arcs created to preserve the

distances between them. More concretely, we focus

on the customizable route planning (CRP)

algorithm [18], [19], the fastest variant of this

method.

III. ONLINE QUERIES

1. Generalized Multilevel Dijkstra

Before getting to specific applications, we

introduce a general framework to analyze elaborate

queries. We consider queries in which distances to

several points (not just s and t) are relevant; these

are the POIs.

We consider an abstract setting in which each non-

trivial cell (on level 1 or higher) is labeled either

safe or unsafe. (Level-0 cells, corresponding to

individual vertices, are always safe.) We define a

safety assignment to be valid if no unsafe cell has a

safe super cell. (In other words, all ancestors of an

unsafe cell must be unsafe as well.) We say that a

cell is active if it is safe but has an unsafe super

cell. We say that a vertex is active if it is a

boundary vertex of an active cell, and that an arc is

active if both of its endpoints are active. The active

graph consists of all active vertices and arcs. Note

that every vertex in the original graph belongs to

exactly one active cell. If the input graph is

disconnected, so is the active graph.

In this setting, a generalized MLD search consists

of running Dijkstra’s algorithm on the active graph.

We define forward, backward, and bidirectional

versions of this in the natural way.

Fig 2 : Active graph and CRP path for an s–t query

using the 2-level partition from Figure 1. All cells and

vertices drawn are active; active arcs are omitted

Fig. 3: Active graph for a set of POIs. The 2-level

partition is the one from Figure 1. Active cells and

vertices are drawn, but active arcs are omitted.

With the notion of the active graph at hand, the

standard CRP s–t point-to-point query can be de-

scribed as a generalized MLD search in which only

the nontrivial cells that contain s and t are unsafe.

Figure 5 gives an example. To analyze more

complex queries (beyond point-to-point), we first

show that the active graph is an overlay for all

active vertices.

2. One-to-Many Queries

We first consider the one-to-many problem: given a

source s and a set of POIs P, compute the distance

from s to all vertices in P (not just the closest).

The trivial solution to this problem is to run Dijk-

stra’s algorithm from s (in G) until all vertices in P

are scanned. We can use the multilevel approach to

accelerate this algorithm, with the help of Theorem

1. During the selection phase, we mark all

nontrivial cells containing either a POI or s as

unsafe (see Figure 6); we then run a generalized

MLD search from s with this assignment. The final

distance labels of the POIs are the answer to the

one-to-many problem.

3. Finding Closest POIs

One-to-many queries can also be applied to the k-

closest POI problem. We simply run the selection

phase on the set P of POIs, run a one-to-many

query, and then pick the k POIs with the smallest

distances.

In practice, we can do better by running a restricted

version of the one-to-many query. Since we scan

POIs in increasing order of distance from s, we can

stop as soon as we are about to scan the k-th POI.

As our experiments will show, this technique is

International Journal of Advanced and Innovative Research (2278-7844) / # 114 / Volume 5 Issue 2

 © 2015 IJAIR. All Rights Reserved 114

surprisingly effective in practice, and POI queries

(for small values of k) tend to be even faster than

point-to-point queries, since they are usually local.

Although in adversarial POI distributions the

pruned search is not much faster than a full one-to-

many query, our experiments will show that

automatic descent is quite efficient for distributions

that occur in practice.

4. Best Via POIs

We now address the k-best via POIs problem.

Given a source s, a target t, and a set P of POIs, we

must find the k POIs pi 2 P that minimize dist (s;

pi)+dist (pi; t).

This can be solved with two one-to-many queries.

We use a forward query to find the distances from s

to P, and a backward query to find the distances

from P to t. This provides all the information

necessary to compute dist (s; pi) + dist (pi; t) for

every POI pi.

IV. INDEX-BASED APPROACHES

We now consider an index-based approach. Com-

pared to automatic descent, it provides a different

trade-off: much faster queries, but worse selection

times and space requirements. As our experiments

will show, selection is still quite fast (a few

seconds sequentially), making the indexing

applicable not only offline scenarios, but also in

some online scenarios.

Recall that automatic descent may be slow because

it must visit all cells that contain POIs, and they

may be numerous. The index-based approach

avoids this by precomputing (at selection time), for

every cell containing a POI, the information that

the automatic descent approach would learn at

query time. This in-formation (the index) is then

associated with elements (arcs or boundary

vertices) of the cell itself. A query can then gather

all the information it needs without descending into

the cell. Since the selection phase no longer needs

to mark POI cells as unsafe, the number of vertices

visited during the POI query is similar to that of a

point-to-point query, regardless of the number (or

location) of POIs in the system.

We propose two variants of this approach: single-

source indexing for the closest POI problem, and

double-source indexing for the best via path

problem

A. Single-Source Indexing

We first consider single-source indexing, an

acceleration to the closest POI problem. This idea

is related (but somewhat different) to the bucket-

based approach developed in the context of one-to-

many computa-tions using hierarchical speedup

techniques (see Sec-tion 5 for more details). This

section discusses how our approach as applied to

multilevel overlays. To index a cell C, we associate

with each entry point v of C a bucket B(v)

containing the k POIs p 2 P within cell C

minimizing the distance dist (v; p), together with

the distances themselves; if C has fewer than k

POIs, the bucket includes all. See Figure 4.

Fig.4. Single-source indexing: we add p to the buckets

of the entry vertices of p’s cells. Level-1 cells are

indicated by dotted lines, solid lines show level-2 cells.

With this index in place (its efficient construction

will be discussed shortly), we can accelerate k-

closest POI queries from any source s. The query is

a forward generalized MLD search from s in which

only the cells containing s are marked as unsafe. It

is a standard search, with minor adjust-ments. First,

we maintain a list L (initially empty) containing the

best k candidate POIs found by the al-gorithm so

far. Moreover, before scanning each vertex v, we

examine each entry (pi; dist (v; pi)) in the associ-

ated bucket B(v). We compute the tentative

distance from s to pi through v (given by dist (s;

v)+dist (v; pi)), and add pi to L if it is among the

lowest k seen so far. (This involves adding a new

entry or replacing another, possibly associated with

pi itself.)

B. Double-Source Indexing

We now discuss double-source indexing, a strategy

to accelerate k-best via node queries.

Unlike in the single-source scenario, where we as-

sociate buckets with vertices, double-source

indexing associates a bucket B(v; w) to each arc (v;

w) in the graph. If (v; w) is an original arc in G,

B(v; w) contains the POIs assigned it. If (v; w) is a

shortcut for a cell C, B(v; w) has the best k POIs pi

within C for (v; w), i.e., it contains what would be

the k via POIs for v–w if C were the entire graph.

In either case, the entry corresponding to POI p in

bucket B(v; w) also holds the actual length of the

shortest v–p–w path (restricted to the cell). See

Figure 8 for an illustration. As Section 5 will

explain, this approach is related to the double-hub

International Journal of Advanced and Innovative Research (2278-7844) / # 115 / Volume 5 Issue 2

 © 2015 IJAIR. All Rights Reserved 115

indexing strategy [34] introduced for hierarchical

speedup techniques.

1. Queries

An indexed s–t via query works as follows. First,

we mark only the nontrivial cells containing s and t

as unsafe, then execute two simultaneous general-

ized MLD searches: a forward search from s and a

backward search from t (we can alternate between

the two searches in any way). For each active

vertex v, we will have two distance labels (ds(v)

and dt(v)), representing the exact distances from s

and to t, re-spectively. These labels are initially

infinite, except for ds(s) and dt(t) (which are zero).

During the algorithm, we maintain a list L with the

k POIs leading to the shortest via paths found so

far.

2. Indexing

We now turn our attention to the selection

(indexing) phase. For each shortcut (v; w) in the

overlay graph, we must build a bucket B(v; w)

containing the k best via points between v and w

within (v; w)’s cell.

The straightforward approach is POI-based index-

ing. We initialize all buckets as empty. We then

pro-cess each original POI arc (a; b) by running a

forward MLD search from b and a backward MLD

search from a; both searches can be pruned at the

boundary of the level-L cell containing (a; b) (the

top level does not need to be visited in full). For

each cell C that contains (a; b) (of which there are

up to L), we consider all pairs (v; w) of entry and

exit points in C, adding (a; b) to B(v; w) with value

dist C (v; a) + `(a; b) + dist C (b; w). (Here dist C

indicates the distance restricted to cell C.) Since it

requires a separate search from each POI arc, POI-

based indexing can be costly.

3. Hybrid Approaches

The indexing techniques introduced in Sections 1

and 2 have faster queries than the automatic

descent approach introduced in Section 3, at the

cost of significant more effort spent at selection

time and higher space usage. For a smoother trade-

off, we can use a hybrid approach: index only the

lower q levels (for some q), and use automatic

descent above that. The query algorithm is still

generalized MLD, but with POI cells marked as

unsafe only if they are above level q (or contain s

or t). Indexed cells are safe. This approach works

for the k-closest POI and k-best via POI problems.

Finally, the fastest point-to-point algorithm, HL,

computes the distance between two random points

in well below one microsecond [15], [16]. Since

these queries are so fast, it is often feasible to run

HL queries from s (and t) to all POIs, and then, like

for RPHAST, pick the k best POIs among those.

This approach can be accelerated by preselecting a

(conservative) set of POIs based on Euclidean

distances.

4. Applications

The applications for POI are extensive. As GPS-

enabled devices as well as software applications

that use digital maps become more available, so too

the applications for POI are also expanding. Newer

digital cameras for example can automatically tag a

photograph using Exif with the GPS location where

a picture was taken; these pictures can then be

overlaid as POI on a digital map or satellite image

such as Google Earth. Geocaching applications are

built around POI collections. In Vehicle tracking

systems POIs are used to mark destination points

and/or offices to those users of GPS tracking

software would easily monitor position of vehicles

according to POIs.

V. EXPERIMENTS

We now present an experimental evaluation of our

algorithms. Our code is written in C++ and

compiled with Microsoft Visual C++ 2012. Our

test machine runs Windows Server 2008 R2 and

has 96 GiB of DDR3-1333 RAM (of which we use

less than 16 GiB) and two 6-core Intel Xeon X5680

3.33 GHz CPUs, each with 6 64 KB of L1, 6 256

KB of L2, and 12 MB of shared L3 cache. All runs

are single-threaded.

Time Complexity:

Time complexity of topological sorting is O(V+E).

After finding topological order, the algorithm

process all vertices and for every vertex, it runs a

loop for all adjacent vertices. Total adjacent

vertices in a graph is O(E). So the inner loop runs

O(V+E) times. Therefore, overall time complexity

of this algorithm is O(V+E).

International Journal of Advanced and Innovative Research (2278-7844) / # 116 / Volume 5 Issue 2

 © 2015 IJAIR. All Rights Reserved 116

TABLE 1

 PREPROCESS CUSTOM SELECTION 4-CLOSEST ALL
 space time space time space time #scanned time #scanned time
algorithm [MiB] [s] [MiB] [s] [MiB] [s] vertices [ms] vertices [ms]

 — — — — — — 7098 1.40 29 297 561 13 347.12
Greedy Algorithm

Dijkstra — — — — — — 7096 1.95 29 297 531 13 367.92
RPHAST 1 519 8 170.1 — — 32.18 0.28 651 974 11.98 651 974 11.95
HL 64 396 11 652.3 — — — — — 7.26 — 7.23
BHL 64 396 11 652.3 — — 13.72 0.21 — 0.01 — 2.16
CRP no index 3 119 5 190.6 71.0 3.9 0.00 0.01 1 626 0.64 12 319 771 8 081.23
CRP reverse index 3 119 5 190.6 71.0 3.9 33.27 9.12 443 0.17 3 933 6.77
CRP bulk-4 index 3 119 5 190.6 71.0 3.9 5.73 2.20 443 0.17 — —
CRP reverse index-2 3 119 5 190.6 71.0 3.9 3.53 1.78 451 0.17 198 602 99.31
CRP bulk-4 index-2 3 119 5 190.6 71.0 3.9 3.53 1.69 451 0.17 — —

REFERENCES

[1] Daniel Delling, Renato F. Werneck, "Customizable

Point-of-Interest Queries in Road Networks", IEEE

TRANSACTIONS ON KNOWLEDGE AND

DATA ENGINEERING, VOL. X, NO. Y,

JANUARY 2015.

[2] E. W. Dijkstra, “A Note on Two Problems in

Connexion with Graphs,” Numerische Mathematik,

vol. 1, pp. 269–271, 1959.

[3] D. Delling, A. V. Goldberg, A. Nowatzyk, and R. F.

Werneck, “PHAST: Hardware-Accelerated Shortest

Path Trees,” Journal of Par. and Dist. Computing,

vol. 73, no. 7, pp. 940–952, 2013.

[4] Z. Chen, H. T. Shen, X. Zhou, and J. X. Yu,

“Monitoring Path Nearest Neighbor in Road

Networks,” in SIGMOD. ACM Press, 2009, pp.

591–602.

[5] H.-J. Cho and C.-W. Chung, “An Efficient and

Scalable Ap-proach to CNN Queries in a Road

Network,” in VLDB, 2005, pp. 865–876.

[6] H. Hu, D. Lee, and J. Xu, “Fast Nearest Neighbor

Search on Road Networks,” in EDBT, ser. LNCS,

vol. 3896. Springer, 2006, pp. 186–203.

[7] C. S. Jensen, J. Kolar,´ T. B. Pedersen, and I.

Timko, “Nearest Neighbor Queries in Road

Networks,” in SIGSPATIAL GIS. ACM Press,

2003, pp. 1–8.

[8] M. Kolahdouzan and C. Shahabi, “Voronoi-Based

K Nearest Neighbor Search for Spatial Network

Databases,” in VLDB, 2004, pp. 840–851.

[9] H. Samet, The Design and Analysis of Spatial Data

Structures. Addison-Wesley, 1989.

[10] S. Shekhar and J. S. Yoo, “Processing In-Route

Nearest Neigh-bor Queries: A Comparison of

Alternative Approaches,” in SIGSPATIAL GIS.

ACM Press, 2003, pp. 9–16.

[11] S.-H. Shin, S.-C. Lee, S.-W. Kim, J. Lee, and E. G.

Lim, “K-Nearest Neighbor Query Processing

Methods in Road Net-work Space: Performance

Evaluation,” in ICINC, 2009, pp. 958–962.

[12] D. Delling, A. V. Goldberg, and R. F. Werneck,

“Faster Batched Shortest Paths in Road Networks,”

in ATMOS, ser. OASIcs, vol. 20, 2011, pp. 52–63.

[13] R. Geisberger, “Advanced Route Planning in

Transportation Networks,” Ph.D. dissertation, KIT,

February 2011.

[14] R. Geisberger, P. Sanders, D. Schultes, and C.

Vetter, “Exact Routing in Large Road Networks

Using Contraction Hierar-chies,” Transportation

Science, vol. 46, no. 3, pp. 388–404, 2012.

[15] I. Abraham, D. Delling, A. V. Goldberg, and R. F.

Werneck, “A Hub-Based Labeling Algorithm for

Shortest Paths on Road Networks,” in SEA, ser.

LNCS, vol. 6630. Springer, 2011, pp. 230–241.

[16] “Hierarchical Hub Labelings for Shortest Paths,” in

ESA, ser. LNCS, vol. 7501. Springer, 2012, pp. 24–

35.

[17] R. Bauer, D. Delling, P. Sanders, D. Schieferdecker,

D. Schultes, and D. Wagner, “Combining

Hierarchical and Goal-Directed Speed-Up

Techniques for Dijkstra’s Algorithm,” ACM JEA,

vol. 15, no. 2.3, pp. 1–31, 2010.

[18] D. Delling, A. V. Goldberg, T. Pajor, and R. F.

Werneck, “Customizable Route Planning,” in SEA,

ser. LNCS, vol. 6630. Springer, 2011, pp. 376–387.

[19] D. Delling and R. F. Werneck, “Faster

Customization of Road Networks,” in SEA, ser.

LNCS, vol. 7933. Springer, 2013, pp. 30–42.

[20] M. Holzer, F. Schulz, and D. Wagner, “Engineering

Multi-Level Overlay Graphs for Shortest-Path

Queries,” ACM JEA, vol. 13, no. 2.5, pp. 1–26,

December 2008.

International Journal of Advanced and Innovative Research (2278-7844) / # 117 / Volume 5 Issue 2

 © 2015 IJAIR. All Rights Reserved 117

