s*gα - totally continuous functions in topological spaces

V.R.Karuppayal^{#1}, N.Nandhini^{*2}

 Associate Professor, Department of Mathematics, Kongunadu Arts and Science College Coimbatore-29, Tamilnadu, India.
M.phil Scholar, Department of Mathematics, Kongunadu Arts and Science College Coimbatore-29, Tamilnadu, India.
V.R.karuppayal@gmail.com
² nandhudec1@gmail.com

Abstract: In this paper we introduced s*gα - totally continuous functions and investigate their properties. Also we derive some basic properties of s*gα - totally continuous functions and three new class s*gα - T₁, s*gα-T₂, s*gα - T₀.

Keywords: s*ga - totally continuous functions.

1.INTRODUCTION

N.Levine [9] introduced the class of $s^*g\alpha$ -continuous functions. Jain [8] introduced totally continuous. T.M. Nour [12] introduced the concept of totally $s^*g\alpha$ -continuous functions as a generalization of totally continuousnfunctions and several properties of totally $s^*g\alpha$ -continuous .S.Ayawarya[1] introduced a new class of sets namely $s^*g\alpha$ -closed sets in topological spaces and derive its properties , and also find the relationship between $s^*g\alpha$ -closed sets and other sets. In this paper we introduced the $s^*g\alpha$ totally continuous functions . Also we derive some basic properties of $s^*g\alpha$ - totally continuous functions and three new class $s^*g\alpha$ - T_1 , $s^*g\alpha$ - T_2 , $s^*g\alpha$ - T_0 .

II. PRELIMINARIES

Throughout this paper (X, τ) , (Y,σ) and (Z, γ) represent non-empty topological spaces. For a subset A of a space (X, τ) , cl(A) and int(A) denote the closure and the interior of A in X respectively. The power set of X is denoted by P(X).

Definition 2.1: A subset A of a space (X, τ) is called

1) a generalized closed (briefly g - closed) set [9] if $cl(A) \subseteq U$ and U is open in (X,τ) the complement of a g - closed set is called a g open, 2) a semi-generalized closed(briefly sg-closed) set [2] if scl(A) \subseteq U whenever A \subseteq U and U is open in (X, τ); the complement of sg-closed set is called sg - open set,

3) a generalized semi-closed (briefly gsclosed) set [4] if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) ; the complement of gsclosed set is gs-open set,

4) a s*g α -closed set [1] scl(A) \subseteq U whenever A \subseteq U and U is *g α -open (X, τ),

5) a generalized α -closed set (briefly gaclosed) [5] if $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is α -open in (X, τ) ,

Definition 2.2: A subset A of a space (X, τ) is called

- s*gα-continuous [1] if the inverse image of each open subset of Y is s*gα-open in X.
- totally-continuous [9] if the inverse image of each open subset of Y is clopen subset of X.
- 3) strongly-continuous [14] if the inverse image of each subset of Y is clopen subset of X.

- totally s*gα-continuous [13] if the inverse image of each open subset of Y is s*gαclopen subset of X.
- 5) strongly $s^*g\alpha$ continuous [13] if the inverse image of each subset of Y is $s^*g\alpha$ clopen subset of X.
- pre s*gα open [3] if the inverse image of every s*gα open set in X is s*gα open in Y.

Definition 2.3 The topological space (X, τ) is said to be

- 1) a $T_{b_2}^*$ space [10] if every g^* closed set is closed.
- a T_b space [6] if every gs closed set is closed.
- 3) a T_c space [11] if every gs closed set is g^{*}- closed.
- 4) a $_{\alpha}T_{b}$ space [5] if every αg closed set is closed.
- 5) a $_{\alpha}T_{c}$ space [5] if every αg closed set is g^{*} -closed.
- 6) $a_{\alpha}T_{\nu_2}^{**}$ space [16] if every *g α closed set is closed.
- 7) a T_c^{**} space [17] if every gs closed set is $*g\alpha$ closed.
- 8) $a_{\alpha}T_{c}^{**}$ space [17] if every α g-closed set is *g α closed.

Definition 2.4 Let A be a subset of a space (X, τ) .

- 1) The set $\cap \{U \in \tau : A \subset U\}$ is called the kernesl of A is denoted by ker(A).
- 2) The set \cap {F \subset X : A \subseteq F,F is s*ga-closed} is called the s*ga-closure of A and is denoted by s*gacl(A).
- The set ∪{F ⊂ X : F ⊆ A,F is s*gα-open} is called the s*gα-interior of A and is denoted by s*gαint(A).

- Let f: (X, τ) → (Y, σ) be a function, the subset {(x,f(x)) : x ∈ X} ⊆ X × Y is called the graph of f and is denoted by Gr(t).
- 5) Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be a function, the subset $\{(x,f(x)) : x \in X\} \subseteq X \times Y$ is called the graph of f and is denoted by Gr(t).

DEFINITION 2.5

- a locally indiscrete [10] if each open subset of X is closed in X;
- s*gα-connected [15] if X cannot be written as a disjoint union of two non-empty s*gαopen;
- ultra normal [13] if each pair of non-empty disjoint closed sets can be separated by disjoint clopen sets;
- 4) weakly hausdorff [13] if each element of X is an intersection of regular closed sets;
- 5) ultrahausdorff [15] if for each pair of distinct points x and y in X, there exist clopen sets A and B containing x and y, respectively, such that $A \cap B = \phi$;

III s*gα-totally continuous functions in topological spaces

Definition 3.1

Let X be a topological space and $x \in X$. Then the set of all points y in X such that x and y cannot be separated by $s*g\alpha$ -separation of X is said to be the quasi $s*g\alpha$ -component of x. A quasi $s*g\alpha$ component of a point x in a space X means the intersection of all $s*g\alpha$ -clopen sets containing x.

Definition 3.2

A function f: $X \to Y$ is said to be $s^*g\alpha$ totally continuous function if the inverse image of every $s^*g\alpha$ -open subset of Y is clopen in X.

Example 3.3

Let $X = Y = \{a, b, c\}, \tau = \{X, \phi, \{a\}, \{b, c\}\}$ and $\sigma = \{Y, \phi, \{a\}, \{b\}, \{a, b\}\}$ Then S*GO $\alpha(Y) = \{Y, \phi, \{a\}, \{a, b\}, \{a, c\}\}$. Define f(a) = a, f(b) = b

and f(c) = c. Clearly the inverse image of each $s*g\alpha$ - open is clopen in X. Therefore f is a $s*g\alpha$ - totally continuous function.

Theorem 3.4

A function f: $X \rightarrow Y$ is s*g α -totally continuous if and only if the inverse image of every s*g α -closed subset of Y is clopen in X.

Proof

Let F be any s*g α -closed set in Y. Then Y – F is s*g α - open set inY. By definition f¹(Y – F) is clopen in X. That is X - f¹(F) is clopen inX. This implies f¹(F) is clopen in X. if V is s*g α - open in Y, then Y–V is s*g α - closed in Y. By hypothesis, f¹(Y–V) = X - f¹(V) is clopen in X, which implies f¹(V) is clopen in X. Thus, inverse image of every s*g α - open set in Y is clopen in X. Therefore f is s*g α - totally continuous function.

Theorem 3.5

Every $s^*g\alpha$ - totally continuous function is a totally continuous function.

Proof

Suppose f: $X \to Y$ is $s^*g\alpha$ - totally continuous and U is any open subset of Y. Since every open set is $s^*g\alpha$ - open, U is $s^*g\alpha$ - open in Y and f: $X \to Y$ is $s^*g\alpha$ - totally continuous, it follows $f^{1}(U)$ is clopen in X. Thus inverse image of every open set in Y is clopen in X. Therefore the function f is totally continuous. The converse of the above theorem need not be true.

Example 3.6

Let $X = Y = \{a, b, c\}, \tau = \{X, \phi, \{a\}, \{b, c\}\}$ and $\sigma = \{Y, \phi, \{a\}\}$. Then $S^*G\alpha(Y) = \{Y, \phi, \{a\}, \{b\}, \{c\}, \{a, c\}\}$. Define f: $(X, \tau) \rightarrow (Y, \sigma)$ as f (a) = a, f (b) = b, f(c) =c. Clearly the inverse image of every open set is clopen. Therefore f is totally continuous. But f is not $s^*g\alpha$ - totally continuous, because for the $s^*g\alpha$ -open set $\{a, b\}, f^1\{a, c\} = \{a, c\}$ is not clopen in X.

Theorem 3.7

Every $s^*g\alpha$ - totally continuous function is totally $s^*g\alpha$ - continuous.

Proof

Suppose f: $X \to Y$ is $s^*g\alpha$ - totally continuous function and A is any open set in Y. Since every open set is $s^*g\alpha$ - open and f: $X \to Y$ is $s^*g\alpha$ - totally continuous, it follows that $f^{-1}(A)$ is clopen and

hence $s^*g\alpha$ -clopen in X. Thus the inverse image of each open set in Y is $s^*g\alpha$ -clopen in X. Therefore f is totally $s^*g\alpha$ -continuous. The converse of the above need not be true.

Example 3.8

Let $X = Y = \{a, b, c\}, \tau = \{X, \phi, \{a\}, \{b, c\}\}$ and $\sigma = \{Y, \phi, \{a\}\}$. $S^*G\alpha(X) = \{X, \phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}\}$ and $S^*G\alpha(Y) = \{Y, \phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}\}$. Define f: $(X, \tau) \rightarrow (Y, \sigma)$ as f(a) = a and f(b) = f(c) = b. Clearly the inverse image of every open set is $s^*g\alpha$ -clopen. Therefore f is totally $s^*g\alpha$ -continuous. But f is not $s^*g\alpha$ -totally countinuous, because for the $s^*g\alpha$ -open set $\{a\}$,

 $f^{1}{a,c} = {a,c}$ is not clopen in X.

Theorem 3.9

Let $f: X \to Y$ be a function, where X and Y are topological spaces. Then following are equivalent:

(i) f is s*g α -totally continuous.

(ii) for each $x \in X$ and each $s^*g\alpha$ -open set V in Y with $f(x) \in V$, there is a

clopen set U in X such that $x \in$ Uand $f(U) \subset V$.

Proof

(i)⇒(ii)

Suppose f: $X \to Y$ is s*g α -totally continuous and V be any s*g α -open set in Y containing f(x) so that $x \in f^{-1}(V)$. Since f is s*g α totally continuous, $f^{-1}(V)$ is clopen in X. Let $U = f^{-1}(V)$, then U is clopen set in X and $x \in U$. Also f(U) = f(f^{-1}(V)) $\subset V$. This implies f(U)) $\subset V$. (ii) \Rightarrow (i)

Let V be s*g α -open in Y. Let $x \in f^1(V)$ be any arbitrary point. This implies $f(x) \in V$. Therefore by (ii) there is a clopen set $f(G_x) \subset X$ containing x such that $f(G_x) \subset V$, which implies $G_x \subset f^1(V)$. We have $x \in G_x \subset f^1(V)$. This implies $f^1(V)$ is clopen neighbourhood of x. Since x is arbitrary, it implies $f^1(V)$ is clopen neighbourhood of each of its points. Hence it is clopen set in X. Therefore f is s*g α -totally continuous.

Definition 3.11

A space X is said to be $s^*g\alpha - T_1$ iff for each pair of distinct points x and y in X, these exists $s^*g\alpha$ -open sets U and V containing x respectively, such $y \notin U$ and $x \notin V$.

Theorem 3.12

Let f: X \rightarrow Y be a s*g α - totally continuous function from a space X into a s*g space Y. Then f is constant on each quasi $s^*g\alpha$ - component of X. Proof

Let a and b be two points of X that lie in the same quasi $s^*g\alpha$ - component of X. Then f(a) and f(b) are elements in Y . Assume $f(a) = \alpha \neq \beta = f(b)$. Since Y is semi-T1, $\{\alpha\}$ is $s^*g\alpha$ - closed in Y and so Y - { α } is s*g α - open. Since f: X \rightarrow Y is s*g α totally continuous $f^{1}(\{\alpha\})$ and $f^{1}(Y - \{\alpha\})$ are disjoint clopen subsets of X. Further $a \in f^{-1}(\{\alpha\})$ and $b \in f^{1}(Y - \{\alpha\})$, which is a contradiction in view of the fact that b belongs to quasi $s^*g\alpha$ -component of a and hence b must belong to every clopen set containing. Hence the result.

Definition 3.13

 $s*g\alpha$ -connected if X cannot be written as a disjoint of two non-empty s*gα -open.

Theorem 3.14

If $f: X \to Y$ is $s^*g\alpha$ - totally continuous function from an s- connected space X onto any space Y, then Y is an indiscrete space.

Proof

Suppose f: X \rightarrow Y is a s*g α - totally continuous function from an s- connected space X onto any space Y. If possible, suppose Y is not indiscrete. Let A be a proper non empty $s^*g\alpha$ - open subset of Y. Then $f^{1}(A)$ is a proper non - empty clopen and hence $s^*g\alpha$ - clopen subset of X. This implies $f^{1}(A)$ is a proper non - empty $s^{*}g\alpha$ - open subset of X, which is a contradiction to the fact that X is s - connected. Therefore Y must be indiscrete.

Theorem 3.15

The composition two $s^*g\alpha$ - totally continuous functions is $s^*g\alpha$ - totally continuous. Proof

Let f: $X \to Y$ and g: $Y \to Z$ be any two $s*g\alpha$ - totally continuous functions. Let V be a $s*g\alpha$ open set in Z. Since g is $s^*g\alpha$ - totally continuous g ¹(V) is clopen and hence open in Y. Since every open set is $s^*g\alpha$ - open, $g^{-1}(V)$ is $s^*g\alpha$ - open in Y. Further, since f is $s^*g\alpha$ - totally continuous,

 $f^{-1}(g^{-1}(V)) = (g \circ f)^{-1}(V)$ is clopen Х. in Hence $g \circ f : X \to Z$ is $s^*g\alpha$ - totally continuous. Theorem 3.16

Let f: X \rightarrow Y be s*g α -totally continuous and g: $Y \rightarrow Z$ be any function. Then gof: $X \rightarrow Z$ is $s^*g\alpha$ -totally continuous if and only if g is irresolute. Proof

Let g: $Y \to Z$ be irresolute. let $g \circ f : X \to Z$ be semi-totally continuous. Let V be semiopen set in Z. Since $g \circ f : X \to Z$ is $s^*g\alpha$ - totally continuous, $(g \circ f)^ ^{1}(V) = f^{1}(g^{-1}(V))$ is clopen in X. Since f is s*gatotally continuous, $g^{-1}(V)$ is s*g α -open in Y. Thus the inverse image of each s*ga-open set in Z is s*gaopen inY. Hence g is irresolute.

Definition 3.17

Let f: $X \rightarrow Y$ be a function. Then the graph function of f is defined by g(x) = (x, f(x)) for each $x \in X$.

Theorem 3.18

A function f: X \rightarrow Y is s*g α -totally continuous, if its graph function is $s^*g\alpha$ -totally continuous.

Proof

Let g: $X \to X \times Y$ be the graph function of f: $X \to Y$. Suppose g is s*g α -totally continuous and F be a s*g α -open set in Y. Then X × F is a s*g α open set of $X \times Y$. Since g is s*g α -totally continuous, $g^{-1}(X \times F) = f^{-1}(F)$ is clopen in X. Thus the inverse image of every $s^*g\alpha$ -open set in Y is clopen in X. Therefore f is s*g α -totally continuous. Let {X $_{\lambda}$: $\lambda \in$ \land } be a family of topological spaces. Then the product space of $\{X_{\lambda}: \lambda \in \Lambda\}$ is denoted by $\Pi\{X_{\lambda}: \lambda\}$ $\in \land$ } or simply ΠX_{λ} .

Theorem 3.19

If a function f: $X \to \Pi Y_{\lambda}$ is s*g α -totally continuous, then $p_{\lambda} \circ f: X \to Y_{\lambda}$ is s*g α -totally continuous for each $\lambda \in \Lambda$, where p_{λ} is the projection of ΠY_{λ} on to Y_{λ} .

Proof

For $\lambda \in \Lambda$, suppose V_{λ} is any s*g α -open set in Y_{λ} . Then $p^{-1}_{\lambda}(V_{\lambda})$ is s*g α -open in ΠY_{λ} . Since f is s*g α -totally continuous, $f^{-1}(p_{\lambda}^{-1}(V_{\lambda})) = (p_{\lambda} \circ f)^{-1}(V_{\lambda})$ is clopen in X. Therefore f: $X \to Y_{\lambda}$ is s*g α -totally continuous.In the sequel, the relationships between s*ga-totally continuous functions and separation axioms are investigated.

Theorem 3.20

If f: X \rightarrow Y is s*g α -totally continuous injection and Y is $s^*g\alpha - T_0$, then X is ultra-Hausdorff.

Proof

Let a and b be any pair of distinct points of X and f be injective. Then $f(a) \neq f(b)$ in Y. Since Y is $s^*g\alpha - T_0$, there exists a $s^*g\alpha$ - open set U containing say f(a) but not f(b). Then, we have $a \in f^{-1}(U)$ and $b \notin f^{-1}(U)$. Since f is $s^*g\alpha$ - totally continuous $f^{-1}(U)$ is clopen in X. Also $a \in f^{-1}(U)$ and $b \in X - f^{-1}(U)$. This implies every pair of distinct points of X can be separated by disjoint clopen set s in X. Therefore X is ultra - Hausdorff.

Theorem 3.21

If f: $X \to Y$ is $s^*g\alpha$ - totally continuous injection and Y is s^*g -T₂, then X is ultra - Hausdorff. *Proof*

Let $x_1, x_2 \in X$ and $x_1 \neq x_2$. Then, since f is injective, $f(x_1) \neq f(x_2)$ in Y. Further, since Y is s*g α -T₂, there exist V₁ and V₂ \in SO(Y) such that $f(x_1) \in$ V₁, $f(x_2) \in V_2$ and V₁ \cap V₂ = ϕ . This implies $x_1 \in f$ ¹(V₁) and $x_2 \in f^1(V_2)$. Since f is s*g α -totally continuous, $f^1(V_1)$ and $f^1(V_2)$ are clopen sets in X. Also $f^1(V_1) \cap f^1(V_1) = f^1(V_1 \cap V_2) = \phi$. Thus every two distinct points of X can be separated by disjoint clopen sets. Therefore X is ultra - Hausdorff.

Theorem 3.22

If f: X \rightarrow Y is s*g α - totally continuous, closed injection and Y is s - normal, then X is ultra - normal.

Proof

Let F_1 and F_2 be disjoint closed subsets of X. Since f is closed and injective, $f(F_1)$ and $f(F_2)$ are disjoint closed subsets of Y. Since Y is s - normal, $f(F_1)$ and $f(F_2)$ are separated by disjoint s*g α - open sets V_1 and V_2 respectively. Therefore we obtain, $F_1 \subset f^1(V_1)$ and $F_2 \subset f^1(V_2)$. Since f is s*g α - totally continuous, $f^1(V_1)$ and $f^1(V_2)$ are clopen sets in X. Also, $f^1(V_1) \cap f^1(V_2) = f^1(V_1 \cap V_2) = \phi$. Thus each pair of non-empty disjoint closed sets in X can be separated by disjoint clopen sets in X.

Therefore X is ultra - normal.

Theorem 3.23

If f: $X \to Y$ is $s^*g\alpha$ - totally continuous surjection and X is connected then Y is s - connected. *Proof*

Suppose Y is not s-connected. Let A and B form disconnection of Y. Then A and B are $s*g\alpha$ - open sets in Y and Y = AU B where $A \cap B = \phi$. Also $X = f^{1}(Y) = f^{1}(A \cup B) = f^{1}(A) \cup f^{1}(B)$, where

 $f^{1}(A)$ and $f^{1}(B)$ are non-empty clopen sets in X, because f is s*g α -totally continuous. Further

 $f^{1}(A) \cap f^{1}(B) = f^{1}(A \cap B) = \phi$. This implies X is not connected, which is a contradiction. Hence Y is s - connected.

Theorem 3.24

Let f: $X \rightarrow Y$ be a totally continuous, closed injection. If Y is s-regular then X is ultra-regular. *Proof*

Let F be a closed set not containing x. Since f is closed, we have f(F) is a closed set in Y not containing f(x). Since Y is s-regular, there exists disjoint s*g α -open sets A and B such that $f(x) \in A$ and $f(F) \subset B$, which implies $x \in f^{-1}(A)$ and $F \subset f^{-1}(B)$, where $f^{-1}(A)$ and $f^{-1}(B)$ are clopen sets in X because f is totally continuous. Moreover, since f is injective, we have $f^{-1}(A) \cap f^{-1}(B) = f^{-1}(A \cap B) = f^{-1}(\phi) = \phi$. Thus, for a pair of a point and a closed set not containing the point, they can be separated by disjoint clopen sets. Therefore X is ultra-regular.

Theorem 3.25

If f: $X \rightarrow Y$ is s*g α -totally continuous injective s*g α -open function from a clopen normal space X onto a space Y, then Y is s*g α -normal. *Proof*

Let F_1 and F_2 be any two disjoint $s^*g\alpha$ closed sets in Y. Since f is $s^*g\alpha$ -totally continuous, $f^1(F_1)$ and $f^1(F_2)$ are clopen subsets of X. Take $U = f^1(F_1)$ and $V = f^1(F_2)$. Since f is injective $U \cap V = f^1(F_1) \cap f^1(F_2) = f^1(F_1 \cap F_2) = f^1(\phi) = \phi$. Since X is clopen normal there exist disjoint open sets A and B such that $U \subset A$ and $V \subset B$. This implies $F_1 = f(U) \subset$ f(A) and $F_2 = f(V) \subset f(B)$. Further, since f is injective $s^*g\alpha$ -open, f(A) and f(B) are disjoint $s^*g\alpha$ open sets. Thus, each pair of disjoint $s^*g\alpha$ -closed sets can be separated by disjoint $s^*g\alpha$ -open sets. Therefore Y is $s^*g\alpha$ -normal.

Definition 3.26

A function f: $X \to Y$ is said to be $s^*g\alpha$ totally open if the image of every $s^*g\alpha$ -open set in X is clopen in Y.

Theorem 3.27

If a bijective function $f : X \to Y$ is $s^*g\alpha$ totally open, then the image of each $s^*g\alpha$ - closed set in X is clopen in Y.

Proof

Let F be a s*g α - closed set in X. Then X-F is s*g α - open in X. Since f is s*g α - totally open, f(X -F) = Y - f(F) is clopen in Y. This implies f(F) is clopen in Y.

Theorem 3.28

A surjective function $f : X \to Y$ is $s^*g\alpha$ totally open if and only if for each subset B of Y and for each $s^*g\alpha$ -closed set U containing $f^1(B)$, there is a clopen set V of Y such that $B \subset V$ and $f^1(V) \subset U$. **Proof**

Suppose f: $X \to Y$ is a surjective s*gatotally open function and $B \subset Y$. Let U be s*gaclosed set of X such that $f^{1}(B) \subset U$. Then $V = Y \cdot f(X - U)$ is clopen subset of Y containing B such that f ${}^{1}(V) \subset U$. On the other hand, suppose F is a s*g α closed set of X. Then $f^{1}(Y - f(F)) \subset X - F$ and X - Fis s*g α - open. By hypothesis, there exists a clopen set V of Y such that Y - f(F) $\subset V$, which implies f ${}^{1}(V) \subset X - F$. Therefore $F \subset X - f^{1}(V)$. Hence $Y - V \subset f(F) \subset f(X - f^{-1}(V)) \subset Y - V$. This implies, f(F) = Y - V, which is clopen in Y. Thus, the image of a s*g α - openset in X is clopen in Y. Therefore f is a s*g α - totally open function.

Theorem 3.29

The composition of two $s^*g\alpha$ - totally open functions is again $s^*g\alpha$ - totally open.

Proof

Suppose f: X \to Y and g: Y \to Z are any two s*g α - totally open functions. Then their composition is

g°f: X \rightarrow Z. Let V be a s*g α - open set in X. Consider (g°f)(V)= g(f(V)). Since f is s*g α - totally open, f(V) is clopen in Y. Hence it is open in Y. But every open set is s*g α - open, which implies f(V) is s*g α - open in Y. Since g is s*g α - totally open, g(f(V)) is clopen in Z. Thus, the image of each s*g α - open set in X is clopen in Z. Therefore g°f: X \rightarrow Z is s*g α - totally open.

Theorem 3.30

If $f: X \to Y$ is $s^*g\alpha$ - totally continuous and $s^*g\alpha$ - totally closed surjection from an s - normal space X to a space Y, then Y is ultra - Hausdorff. **Proof**

Let A and B be disjoint closed sets of Y. Since f: $X \rightarrow Y$ is s*g α -totally continuous, f¹(A) and f¹(B) are clopen hence closed sets in X. Since X is s normal, there exist disjoint s*g α -open sets U and V such that $f^{1}(A) \subset U$ and $f^{1}(B) \subset V$. There are clopen sets G and H such that $A \subset G$, $B \subset H$ and $f^{1}(G) \subset U$, $f^{1}(H) \subset V$. Then we have, $f^{1}(G) \cap f^{1}(H) \subset U \cap V =$ ϕ , which implies $f^{1}(G \cap H) \subset \phi$, which implies

 $G \cap H = \phi$. Thus every pair of non-empty disjoint closed sets can be separated by disjoint clopen sets. Therefore Y is ultra-Hausdorff.

Definition 3.31

A function f: $(X, \tau) \rightarrow (Y, \sigma)$ is called totally s*g α -continuous if the inverse image of every open set of (Y, σ) is a s*g α -clopen subset of (X, τ) .

Theorem 3.32

Every totally $s^*g\alpha\mbox{-}continuous$ function is $s^*g\alpha\mbox{-}continuous.$

Proof

Let V be a open set of (Y, σ) .Since f is totally s*g α -continuous, f¹(V) is s*g-closed in (X, τ).Since every closed set is s*g α -closed. Hence f⁻¹(V) is s*g α -closed in (X, τ). Therefore f is s*g α -continuous.

Example 3.33

Let $X = Y = \{a, b, c\}$ with $\tau = \{\phi, X, \{a\}\}$ and $\sigma = \{\phi, Y, \{a\}, \{a, b\}\}, \sigma^c = \{\phi, Y, \{c\}, \{b, c\}\}$. The function f: $(X, \tau) \rightarrow (Y, \sigma)$ be defined as f(a) = b, f(b) = a and f(c) = c. The s*g\alpha - open sets of (X, τ) are ϕ , $X, \{a\}, \{b\}, \{c\}, \{a, c\}, \{a, b\}$. Thus f is s*g\alphacontinuous but not totally s*g\alpha-continuous. Since the inverse image of the open set f⁻¹{a} = {a} in (Y, \sigma) is not s*g\alpha-open in (X, τ) .

Definition 3.35

A topological space (X, τ) is said to be s*g α -connected union of two non - empty disjoint s*g α - open sets.

Theorem 3.36

A space (X, τ) is $s^*g\alpha$ - connected if and only if every totally $s^*g\alpha$ - continuous function from a space (X, τ) into any T_o space (Y, σ) is a constant map.

Proof

Necessity part

Suppose f: $(X, \tau) \rightarrow (Y, \sigma)$ is a totally s*g α - continuous function, where (Y, σ) is a T_o space. On the contrary if we suppose that f is not a constant map, then we can select two points x and y in X such that $f(x) \rightarrow f(y)$.Since (Y,σ) is a T_o space and f(x) and f(y) are distinct points of Y, then there exists an open set G in (Y, σ) containing f(x) but not f(y).Since f is totally s*g α - continuous function, then f⁻¹(G) is s*g α - clopen subsets of (X, τ) . Clearly x f¹(G) and f¹(G). Now X = f¹(G) \subset (f¹(G)), which is the union of two non - empty s*g α - open subsets of X. Thus X is not a s*g α - connected space. A contradiction.

Sufficiency part

Suppose $(X,\,\tau)$ is not a $s^*g\alpha$ - connected space. Then there exists a proper non-empty $s^*g\alpha$ -

CONCLUSION

In this paper we introduced a new class of sets namely $s^*g\alpha$ -totally continuous function in topological spaces and using this sets we introduced three new class $s^*g\alpha - T_1$, $s^*g\alpha - T_2$, $s^*g\alpha - T_0$.

REFERENCES

[1] K.Ayswarya, A Study On Group Structure of closed sets in topological space, M.phi dissertation Kongunadu Arts and Science College coimbatore(2014)

[2] P. Bhattacharyya and B.K. Lahiri, Semi-generalized closed sets in topology, Indian J. Math., 29(3) (1987), 375-382.

[3] S. G. Crossley and S. K. Hildebrand, Semi-Topological properties, Fund.

[4] R.Devi, Studies On generalizations of closed maps and homeomorphisms in topological spaces, Ph.D.Thesis, Bharathiar University, Coimbatore(1994).

[5] R. Devi, K. Balachandran, H. Maki and ,Generalized closed maps and J.Pure.Appl.Math.,29(1)(1998),37-49.

[6] R. Devi, H. Maki and K. Balachandran, Semigeneralized homeomorphisms and generalized Semihomeomorphisms in topological spaces, Indian J.Pure.Appl.Math.,26(3)(1995),271-284.

[7] J. Dontchev, On generalizing semi-preopen sets ,Mem. Fac. Sci. Kochi Ser.A,Math.,16 (1995),35-48.

[8] R. C. Jain, The role of regularly open sets in general topology, Ph.D. thesis, Meerut University, Institute of advanced studies, Meerut-India,

clopen subset A of X. Let $Y = \{a, b\}$ and $X = \{X, \phi, \{a\}, \{b\}\}$. Define f: $(X, \tau) \rightarrow (Y, \sigma)$ by f(x) = a for any x and f(x) = b for any x .Clearly f is a non constant and totally $s^*g\alpha$ - continuous map. Clearly (Y, σ) is a T_o space. Thus we have produced a non constant totally $s^*g\alpha$ - continuous function from (X, τ) into the T_o space (Y, σ) . A contradiction.

(1980).

[9] N. Levine, Generalized closed sets in topology, Rend. Circ. Mat. Palermo, 19(2) (1970), 89-96.

[10] T. Nieminen, On ultrapseudo compact and related spaces, Ann. Acad.Sci. Fenn. Ser. A I Math., 3 (1977), 185 – 205.

[11] O. Njastad ,On some classes of nearly open sets, Pacific J.Math.,15(1965), 961-970.

[12] T.M.Nour, Totally semi-continuous functions, Indian J. Pure Appl.Math.,26(7)(1995),675-678.

[13] T. Soundararajan, Weakly Housdorff spaces and the cardinality of topological spaces, In : General topology and its relation to modern

analysis and algebra, III Proc. Conf. Kanpur, 1968, Academia, Prague, (1971), 301-306.

[14] M. Stone, Applications of the theory of boolean rings to general topology, Trans. Amer. Math. Soc., 41 (1937), 374.

[15] R. Staum, The algebra of bounded continuous functions into a nonarchimedean field, Pacific J. Math., 50 (1974), 169 - 185.

[16] M.K.R.S.Veerakumar, Between g^{*} - closed sets and g-closed sets, Antartica J.Math.,**3**(1)(2006),43-65.

[17] M.Vigneshwaran, A study on *g \Box -closed sets in Topological spaces, M.Sc. Dissertation, Kongunadu Arts and Science (Autonomous), Coimbatore(2006).

[18] M.Vigneshwaran and R. Devi, On $G\Box$ o-kernel in the digital plane, International Journal of Mathematical Archive-**3**(6)(2012),2358-2373.