s*g - totally continuous functions in topological spaces

V.R.Karuppayal #1, N.Nandhini *2

1. Associate Professor, Department of Mathematics, Kongunadu Arts and Science College Coimbatore-29,Tamilnadu, India. 2. M.phil Scholar, Department of Mathematics, Kongunadu Arts and Science College Coimbatore-29,Tamilnadu, India. ¹ V.R.karuppayal@gmail.com ²nandhudec1@gmail.com

Abstract: In this paper we introduced $s * g\alpha$ - totally **continuous functions and investigate their properties.** Also we derive some basic properties of $s * g\alpha$ - **totally continuous functions and three new class** $s^*g\alpha$ **-T₁,** $s^*g\alpha$ **-T₂,** $s^*g\alpha$ **-T₀.**

 Keywords: s*g - totally continuous functions.

1.INTRODUCTION

N.Levine [9] introduced the class of $s \ast g \alpha$ -continuous functions. Jain [8] introduced totally continuous. T.M. Nour [12] introduced the concept of totally $s*g\alpha$ -continuous functions as a generalization of totally continuousnfunctions and several properties of totally $s*g\alpha$ -continuous .S.Ayawarya[1] introduced a new class of sets namely $s*g\alpha$ -closed sets in topological spaces and derive its properties , and also find the relationship between $s * g\alpha$ -closed sets and other sets. In this paper we introduced the $s*g\alpha$ totally continuous functions . Also we derive some basic properties of $s \cdot g\alpha$ - totally continuous functions and three new class $s \cdot g\alpha -T_1$, $s \cdot g\alpha -T_2$, $s \cdot g\alpha -T_0$.

II. PRELIMINARIES

Throughout this paper (X, τ) , (Y, σ) and (Z, γ) represent non-empty topological spaces. For a subset A of a space (X, τ) , cl(A) and int(A) denote the closure and the interior of A in X respectively. The power set of X is denoted by $P(X)$.

*Definition 2.1***:** A subset A of a space (X, τ) is called

1) a generalized closed (briefly g - closed) set [9] if cl(A) \subseteq U and U is open in (X,τ) the complement of a g - closed set is called a g open,

2) a semi-generalized closed(briefly sg-closed) set [2] if scl(A) \subseteq U whenever A \subseteq U and U is open in (X, τ) ; the complement of sg-closed set is called sg - open set,

3) a generalized semi-closed (briefly gsclosed) set [4] if scl(A) \subseteq U whenever A \subseteq U and U is open in (X, τ) ; the complement of gsclosed set is gs-open set ,

4) a s*g α -closed set [1] scl(A) \subseteq U whenever $A \subseteq U$ and U is *g α -open (X, τ) ,

5) a generalized α -closed set (briefly g α closed) [5] if $\alpha cl(A) \subset U$ whenever $A \subseteq U$ and U is α -open in (X, τ) ,

Definition 2.2: A subset A of a space (X, τ) is called

- 1) s*g α -continuous [1] if the inverse image of each open subset of Y is $s * g\alpha$ -open in X.
- 2) totally-continuous [9] if the inverse image of each open subset of Y is clopen subset of X.
- 3) strongly-continuous [14] if the inverse image of each subset of Y is clopen subset of X.
- 4) totally $s * g\alpha$ -continuous [13] if the inverse image of each open subset of Y is $s * g\alpha$ clopen subset of X.
- 5) strongly $s * g\alpha$ continuous [13] if the inverse image of each subset of Y is $s * g\alpha$ clopen subset of X.
- 6) pre s*g α open [3] if the inverse image of every $s * g\alpha$ - open set in X is $s * g\alpha$ - open in Y.

Definition **2.3** The topological space (X, τ) is said to be

- 1) a $T_{1/2}^*$ space [10] if every g^* closed set is closed.
- 2) a T_b space [6] if every gs closed set is closed.
- 3) a T_c space [11] if every gs closed set is g^* closed.
- 4) a $_{\alpha}T_{\text{b}}$ space [5] if every α g closed set is closed.
- 5) a $_{\alpha}T_c$ space [5] if every α g closed set is g^{*}closed.
- 6) a $_{\alpha}T_{1/2}^{*}$ space [16] if every *g α closed set is closed.
- 7) a T_c^{**} space [17] if every gs closed set is $*_g\alpha$ - closed.
- 8) $a_{\alpha}T_c^{**}$ space [17] if every α g-closed set is $*_g\alpha$ - closed.

Definition 2.4 Let A be a subset of a space (X, τ) .

- 1) The set \cap {U $\in \tau : A \subset U$ } is called the kernesl of A is denoted by $ker(A)$.
- 2) The set \cap {F \subset X : A \subseteq F,F is s*g α -closed} is called the $s * g\alpha$ -closure of A and is denoted by $s * \text{g}\alpha cl(A)$.
- 3) The set $\bigcup \{F \subset X : F \subseteq A, F \text{ is } s^*g\alpha\text{-open} \}$ is called the $s * g\alpha$ -interior of A and is denoted by $s * g \text{cint}(A)$.
- 4) Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be a function, the subset $\{(x,f(x)) : x \in X\} \subset X \times Y$ is called the graph of f and is denoted by $Gr(t)$.
- 5) Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be a function, the subset $\{(x,f(x)) : x \in X\} \subseteq X \times Y$ is called the graph of f and is denoted by $Gr(t)$.

DEFINITION 2.5

- 1) a locally indiscrete [10] if each open subset of X is closed in X;
- 2) s*g α -connected [15] if X cannot be written as a disjoint union of two non-empty $s * g\alpha$ open;
- 3) ultra normal [13] if each pair of non-empty disjoint closed sets can be separated by disjoint clopen sets;
- 4) weakly hausdorff [13] if each element of X is an intersection of regular closed sets;
- 5) ultrahausdorff [15] if for each pair of distinct points x and y in X, there exist clopen sets A and B containing x and y, respectively, such that $A \cap B = \phi$;

III s*g-totally continuous functions in topological spaces

Definition **3.1**

Let X be a topological space and $x \in X$. Then the set of all points y in X such that x and y cannot be separated by $s * g\alpha$ -separation of X is said to be the quasi $s * g\alpha$ -component of x. A quasi $s * g\alpha$ component of a point x in a space X means the intersection of all $s * g\alpha$ -clopen sets containing x.

Definition **3.2**

A function f: $X \rightarrow Y$ is said to be $s * g\alpha$ totally continuous function if the inverse image of every $s * g\alpha$ -open subset of Y is clopen in X.

Example **3.3**

Let $X = Y = \{a, b, c\}, \tau = \{X, \phi, \{a\}, \{b,$ c}} and $\sigma = \{Y, \phi, \{a\}, \{b\}, \{a, b\}\}$ Then $S*GO\alpha(Y) =$ { $Y, \phi, \{a\}, \{a, b\}, \{a, c\}$ }. Define $f(a) = a$, $f(b) = b$ and $f(c) = c$. Clearly the inverse image of each $s * g\alpha$ open is clopen in X. Therefore f is a $s * g\alpha$ - totally continuous function.

Theorem 3.4

A function f: $X \rightarrow Y$ is $s * g\alpha$ -totally continuous if and only if the inverse image of every $s*g\alpha$ -closed subset of Y is clopen in X.

Proof

Let F be any s*g α -closed set in Y. Then Y – F is $s * g\alpha$ - open set in Y. By definition $f^{-1}(Y - F)$ is clopen in X. That is $X - f¹(F)$ is clopen in X. This implies $f^1(F)$ is clopen in X. if V is $s * g\alpha$ - open in Y , then Y–V is $s * g\alpha$ - closed in Y .By hypothesis, f ${}^{1}(Y-V) = X - f^{1}(V)$ is clopen in X, which implies f $1(V)$ is clopen in X. Thus, inverse image of every $s * g\alpha$ - open set in Y is clopen in X. Therefore f is $s*g\alpha$ - totally continuous function.

Theorem 3.5

Every $s * g\alpha$ - totally continuous function is a totally continuous function.

Proof

Suppose f: $X \rightarrow Y$ is $s * g\alpha$ - totally continuous and U is any open subset of Y. Since every open set is $s * g\alpha$ - open, U is $s * g\alpha$ - open in Y and f: $X \rightarrow Y$ is $s * g\alpha$ - totally continuous, it follows $f¹(U)$ is clopen in X. Thus inverse image of every open set in Y is clopen in X. Therefore the function f is totally continuous. The converse of the above theorem need not be true.

Example **3.6**

Let $X = Y = \{a, b, c\}, \tau = \{X, \phi, \{a\}, \{b, c\}\}\$ and $\sigma = \{Y, \phi, \{a\}\}\$. Then $S^*G\alpha(Y) = \{Y, \phi, \phi\}$ {a}, {b}, {c}, {a, c}}. Define f: $(X, \tau) \rightarrow (Y, \sigma)$ asf (a) $=$ a, f (b) $=$ b, f(c) $=$ c. Clearly the inverse image of every open set is clopen. Therefore f is totally continuous. But f is not $s * g\alpha$ - totally continuous, because for the s*g α -open set {a, b}, $f^{-1}\{a, c\} = \{a,$ c} is not clopen in X.

Theorem 3.7

Every $s * g\alpha$ - totally continuous function is totally $s * g\alpha$ - continuous.

Proof

Suppose f: $X \rightarrow Y$ is $s * g\alpha$ - totally continuous function and A is any open set in Y. Since every open set is $s \ast g \alpha$ - open and f: $X \rightarrow Y$ is $s \ast g \alpha$ totally continuous, it follows that $f^1(A)$ is clopen and hence $s*g\alpha$ -clopen in X. Thus the inverse image of each open set in Y is $s * g\alpha$ -clopen in X. Therefore f is totally $s * g\alpha$ -continuous. The converse of the above need not be true.

Example **3.8**

Let $X = Y = \{a, b, c\}, \tau = \{X, \phi, \{a\}, \{b, c\}\}\$ and $\sigma = \{Y, \phi, \{a\}\}\$. $S^*G\alpha(X) = \{X, \phi, \{a\}\}$ ${b}, {c}, {a, b}, {a, c}, {b, c}$ and $S*G\alpha$ (Y) = {Y, ϕ , ${a}, {b}, {c}, {a}, {b}, {a}, {c}$. Define f: $(X, \tau) \rightarrow (Y, \sigma)$ as $f(a) = a$ and $f(b) = f(c) = b$. Clearly the inverse image of every open set is $s * g\alpha$ -clopen. Therefore f is totally s*g α -continuous. But f is not s*g α -totally countinuous, because for the $s * g\alpha$ -open set {a},

 $f^{-1}\{a,c\} = \{a,c\}$ is not clopen in X.

Theorem 3.9

Let f: $X \rightarrow Y$ be a function, where X and Y are topological spaces. Then following are equivalent:

(i) f is $s * g\alpha$ -totally continuous.

(ii) for each $x \in X$ and each s*g α -open set V in Y with $f(x) \in V$, there is a

clopen set U in X such that $x \in$ Uand $f(U) \subset V$.

Proof

 $(i) \Rightarrow (ii)$

Suppose f: $X \rightarrow Y$ is $s * g\alpha$ -totally continuous and V be any $s*g\alpha$ -open set in Y containing $f(x)$ so that $x \in f^1(V)$. Since f is $s * g\alpha$ totally continuous, $f^1(V)$ is clopen in X. Let $U = f^1$ (V), then U is clopen set in X and $x \in U$. Also $f(U) =$ $f(f^1(V)) \subset V$. This implies $f(U) \subset V$. $(ii) \Rightarrow (i)$

Let V be s*g α -open in Y. Let $x \in f^1(V)$ be any arbitrary point. This implies $f(x) \in V$. Therefore by (ii) there is a clopen set $f(G_x) \subset X$ containing x such that $f(G_x) \subset V$, which implies $G_x \subset f^1(V)$. We have $x \in G_x \subset f^1(V)$. This implies $f^1(V)$ is clopen neighbourhood of x. Since x is arbitrary, it implies $f^{-1}(V)$ is clopen neighbourhood of each of its points. Hence it is clopen set in X. Therefore f is $s*g\alpha$ -totally continuous.

Definition **3.11**

A space X is said to be $s \cdot g \alpha - T_1$ iff for each pair of distinct points x and y in X, these exists $s * g\alpha$ -open sets U and V containing x respectively, such $y \notin U$ and $x \notin V$.

Theorem 3.12

Let f: $X \rightarrow Y$ be a s*g α - totally continuous function from a space X into a $s * g$ space Y. Then f is constant on each quasi $s * g\alpha$ - component of X. *Proof*

Let a and b be two points of X that lie in the same quasi $s * g\alpha$ - component of X. Then f(a) and f(b) are elements in Y. Assume $f(a) = \alpha \neq \beta = f(b)$. Since Y is semi-T1, $\{\alpha\}$ is s*g α - closed in Y and so Y - $\{\alpha\}$ is s*g α - open. Since f: X \rightarrow Y is s*g α totally continuous $f^1(\{\alpha\})$ and $f^1(Y - \{\alpha\})$ are disjoint clopen subsets of X. Further $a \in f^1(\{\alpha\})$ and $b \in f^1(Y - \{\alpha\})$, which is a contradiction in view of the fact that b belongs to quasi $s * g\alpha$ -component of a and hence b must belong to every clopen set containing. Hence the result.

Definition **3.13**

 $s*g\alpha$ -connected if X cannot be written as a disjoint of two non-empty $s * g\alpha$ -open.

Theorem 3.14

If $f: X \rightarrow Y$ is $s * g\alpha$ - totally continuous function from an s- connected space X onto any space Y, then Y is an indiscrete space.

Proof

Suppose f: $X \rightarrow Y$ is a s*g α - totally continuous function from an s- connected space X onto any space Y. If possible, suppose Y is not indiscrete. Let A be a proper non empty $s * g\alpha$ - open subset of Y. Then $f^1(A)$ is a proper non - empty clopen and hence $s * g\alpha$ - clopen subset of X. This implies $f^1(A)$ is a proper non - empty $s * g\alpha$ - open subset of X, which is a contradiction to the fact that X is s - connected. Therefore Y must be indiscrete.

Theorem 3.15

The composition two $s * g\alpha$ - totally continuous functions is $s * g\alpha$ - totally continuous. *Proof*

Let f: $X \rightarrow Y$ and g: $Y \rightarrow Z$ be any two $s*g\alpha$ - totally continuous functions. Let V be a $s*g\alpha$ open set in Z. Since g is $s * g\alpha$ - totally continuous g⁻ 1 ¹(V) is clopen and hence open in Y. Since every open set is $s * g\alpha$ - open, $g^{-1}(V)$ is $s * g\alpha$ - open in Y. Further, since f is $s * g\alpha$ - totally continuous,

 $f^{-1}(g^{-1}(V)) = (g \circ f)^{-1}(V)$ is clopen in X. Hence $g \circ f : X \to Z$ is $s * g\alpha$ - totally continuous. *Theorem 3.16*

Let f: $X \rightarrow Y$ be s*g α -totally continuous and g: Y \rightarrow Z be any function. Then g∘f: X \rightarrow Z is $s*g\alpha$ -totally continuous if and only if g is irresolute. *Proof*

Let g: $Y \rightarrow Z$ be irresolute. let g∘f : $X \rightarrow Z$ be semi-totally continuous. Let V be semiopen set in Z. Since $g \circ f : X \to Z$ is $s * g\alpha$ - totally continuous, $(g \circ f)$ ${}^{1}(V) = f^{-1}(g^{-1}(V))$ is clopen in X. Since f is s*g α totally continuous, $g^{-1}(V)$ is s*g α -open in Y. Thus the inverse image of each s*g α -open set in Z is s*g α open inY. Hence g is irresolute.

Definition **3.17**

Let f: $X \rightarrow Y$ be a function. Then the graph function of f is defined by $g(x) = (x, f(x))$ for each x ∈ X.

Theorem 3.18

A function f: $X \rightarrow Y$ is $s * g\alpha$ -totally continuous, if its graph function is $s * g\alpha$ -totally continuous.

Proof

Let g: $X \rightarrow X \times Y$ be the graph function of f: $X \rightarrow Y$. Suppose g is s*g α -totally continuous and F be a s*g α -open set in Y. Then $X \times F$ is a s*g α open set of $X \times Y$. Since g is s*g α -totally continuous, $g^{-1}(X \times F) = f^{-1}(F)$ is clopen in X. Thus the inverse image of every $s * g\alpha$ -open set in Y is clopen in X. Therefore f is s*g α -totally continuous. Let $\{X_\lambda : \lambda \in \mathbb{R}^n\}$ ∧ } be a family of topological spaces. Then the product space of $\{X_{\lambda}: \lambda \in \Lambda\}$ is denoted by $\Pi\{X_{\lambda}: \lambda\}$ $\in \Lambda$ } or simply ΠX_{λ} .

Theorem 3.19

If a function f: $X \to \Pi Y_\lambda$ is s*g α -totally continuous, then $p_{\lambda} \circ f: X \to Y_{\lambda}$ is s*g α -totally continuous for each $\lambda \in \Lambda$, where p_{λ} is the projection of ΠY_λ on to Y_λ .

Proof

For $\lambda \in \Lambda$, suppose V_{λ} is any s*g α -open set in Y_{λ} . Then $p^{-1}{}_{\lambda} (V_{\lambda})$ is s*g α -open in ΠY_{λ} . Since f is s*g α -totally continuous, $f^1(p_\lambda^{-1}(V_\lambda)) = (p_\lambda \circ f)^{-1}(V_\lambda)$ is clopen in X. Therefore f: $X \rightarrow Y_{\lambda}$ is s*g α -totally continuous.In the sequel, the relationships between $s*g\alpha$ -totally continuous functions and separation axioms are investigated.

Theorem 3.20

If f: $X \rightarrow Y$ is s*g α -totally continuous injection and Y is $s * g\alpha - T_0$, then X is ultra-Hausdorff.

Proof

Let a and b be any pair of distinct points of X and f be injective. Then $f(a) \neq f(b)$ in Y. Since Y is $s*g\alpha-T_0$, there exists a $s*g\alpha$ - open set U containing say f(a) but not f(b). Then, we have $a \in f^1(U)$ and $b \notin$ $f¹(U)$. Since f is s*g α - totally continuous $f¹(U)$ is clopen in X. Also $a \in f^1(U)$ and $b \in X - f^1(U)$. This implies every pair of distinct points of X can be separated by disjoint clopen set s in X. Therefore X is ultra - Hausdorff.

Theorem 3.21

If f: $X \rightarrow Y$ is $s * g\alpha$ - totally continuous injection and Y is $s * g - T_2$, then X is ultra - Hausdorff. *Proof*

Let $x_1, x_2 \in X$ and $x_1 \neq x_2$. Then, since f is injective, $f(x_1) \neq f(x_2)$ in Y. Further, since Y is $s * g\alpha$ -T₂, there exist V₁ and V₂ \in SO(Y) such that f(x₁) \in V_1 , $f(x_2) \in V_2$ and $V_1 \cap V_2 = \phi$. This implies $x_1 \in f$ ${}^{1}(V_{1})$ and $x_{2} \in f^{1}(V_{2})$. Since f is s*g α -totally continuous, $f^{-1}(V_1)$ and $f^{-1}(V_2)$ are clopen sets in X. Also $f^1(V_1) \cap f^1(V_1) = f^1(V_1 \cap V_2) = \phi$. Thus every two distinct points of X can be separated by disjoint clopen sets. Therefore X is ultra - Hausdorff.

Theorem 3.22

If f: $X \rightarrow Y$ is $s * g\alpha$ - totally continuous, closed injection and Y is s - normal, then X is ultra normal.

Proof

Let F_1 and F_2 be disjoint closed subsets of X. Since f is closed and injective, $f(F_1)$ and $f(F_2)$ are disjoint closed subsets of Y . Since Y is s - normal, $f(F_1)$ and $f(F_2)$ are separated by disjoint s*g α - open sets V_1 and V_2 respectively. Therefore we obtain, F_1 $\subset f^1(V_1)$ and $F_2 \subset f^1(V_2)$. Since f is s*g α - totally continuous, $f'(V_1)$ and $f'(V_2)$ are clopen sets in X. Also, $f'(V_1) \cap f'(V_2) = f'(V_1 \cap V_2) = \phi$. Thus each pair of non-empty disjoint closed sets in X can be separated by disjoint clopen sets in X.

Therefore X is ultra - normal.

Theorem 3.23

If f: $X \rightarrow Y$ is $s * g\alpha$ - totally continuous surjection and X is connected then Y is s - connected. *Proof*

Suppose Y is not s-connected. Let A and B form disconnection of Y .Then A and B are $s \ast g\alpha$ open sets in Y and Y = A∪ B where $A \cap B = \phi$. Also $X = f^{-1}(Y) = f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)$, where

 $f⁻¹(A)$ and $f⁻¹(B)$ are non-empty clopen sets in X, because f is $s * g\alpha$ -totally continuous. Further

 $f⁻¹(A) \cap f⁻¹(B) = f⁻¹(A \cap B) = \phi$. This implies X is not connected, which is a contradiction. Hence Y is s connected.

Theorem 3.24

Let f: $X \rightarrow Y$ be a totally continuous, closed injection. If Y is s-regular then X is ultra-regular. *Proof*

Let F be a closed set not containing x. Since f is closed, we have f(F) is a closed set in Y not containing $f(x)$. Since Y is s-regular, there exists disjoint s*g α -open sets A and B such that $f(x) \in A$ and $f(F) \subset B$, which implies $x \in f^1(A)$ and $F \subset f$ ¹(B), where $f^{-1}(A)$ and $f^{-1}(B)$ are clopen sets in X because f is totally continuous. Moreover, since f is injective, we have $f'(\mathbf{A}) \cap f'(\mathbf{B}) = f'(\mathbf{A} \cap \mathbf{B}) = f'(\phi)$ $= \phi$. Thus, for a pair of a point and a closed set not containing the point, they can be separated by disjoint clopen sets. Therefore X is ultra-regular.

Theorem 3.25

If f: $X \rightarrow Y$ is s*g α -totally continuous injective $s * g\alpha$ -open function from a clopen normal space X onto a space Y, then Y is $s * g\alpha$ -normal. *Proof*

Let F₁ and F₂ be any two disjoint $s^*g\alpha$ closed sets in Y. Since f is $s * g\alpha$ -totally continuous, $f^1(F_1)$ and $f^1(F_2)$ are clopen subsets of X. Take U = f ${}^{1}(F_1)$ and V = f⁻¹(F₂). Since f is injective U \cap V = f ¹(F₁) ∩ f⁻¹(F₂) = f⁻¹(F₁ ∩ F₂) = f⁻¹(ϕ) = ϕ . Since X is clopen normal there exist disjoint open sets A and B such that $U \subset A$ and $V \subset B$. This implies $F_1 = f(U) \subset$ f(A) and $F_2 = f(V) \subset f(B)$. Further, since f is injective s*g α -open, f(A) and f(B) are disjoint s*g α open sets. Thus, each pair of disjoint $s * g\alpha$ -closed sets can be separated by disjoint $s*g\alpha$ -open sets. Therefore Y is $s * g\alpha$ -normal.

Definition **3.26**

A function f: $X \rightarrow Y$ is said to be $s * g\alpha$ totally open if the image of every $s * g\alpha$ -open set in X is clopen in Y.

Theorem 3.27

If a bijective function $f : X \to Y$ is $s * g\alpha$ totally open, then the image of each $s * g\alpha$ - closed set in X is clopen in Y .

Proof

Let F be a $s * g\alpha$ - closed set in X. Then X-F is $s * g\alpha$ - open in X. Since f is $s * g\alpha$ - totally open, $f(X - F) = Y - f(F)$ is clopen in Y. This implies $f(F)$ is clopen in Y .

Theorem 3.28

A surjective function $f : X \to Y$ is $s * g\alpha$ totally open if and only if for each subset B of Y and for each s*g α -closed set U containing $f^{-1}(B)$, there is a clopen set V of Y such that $B \subset V$ and $f^1(V) \subset U$. *Proof*

Suppose f: $X \rightarrow Y$ is a surjective s*g α totally open function and B \subset Y. Let U be s*g α closed set of X such that $f'(B) \subset U$. Then $V = Y - f(X)$ − U) is clopen subset of Y containing B such that f ¹(V) ⊂ U. On the other hand, suppose F is a s*gα closed set of X. Then $f'(Y - f(F)) \subset X - F$ and $X - F$ is $s * g\alpha$ - open. By hypothesis, there exists a clopen set V of Y such that Y - $f(F) \subset V$, which implies f $1(V)$ ⊂ X – F. Therefore F ⊂ X - f¹(V). Hence Y – $V \subset f(F) \subset f(X - f^1(V)) \subset Y - V$. This implies, $f(F) = Y - V$, which is clopen in Y. Thus, the image of a $s * g\alpha$ - openset in X is clopen in Y. Therefore f is a $s * g\alpha$ - totally open function.

Theorem 3.29

The composition of two $s * g\alpha$ - totally open functions is again $s * g\alpha$ - totally open.

Proof

Suppose f: $X \rightarrow Y$ and g: $Y \rightarrow Z$ are any two $s * g\alpha$ - totally open functions. Then their composition is

g∘f: $X \rightarrow Z$. Let V be a s*g α - open set in X. Consider (g∘f)(V)= g(f(V)). Since f is $s * g\alpha$ - totally open, f(V) is clopen in Y . Hence it is open in Y. But every open set is $s * g\alpha$ - open, which implies $f(V)$ is $s * g\alpha$ - open in Y. Since g is $s * g\alpha$ - totally open, $g(f(V))$ is clopen in Z. Thus, the image of each s*g α open set in X is clopen in Z. Therefore g∘f: $X \rightarrow Z$ is $s*g\alpha$ - totally open.

Theorem **3.30**

If f: $X \rightarrow Y$ is $s * g\alpha$ - totally continuous and $s*g\alpha$ - totally closed surjection from an s - normal space X to a space Y , then Y is ultra - Hausdorff. *Proof*

Let A and B be disjoint closed sets of Y. Since f: $X \rightarrow Y$ is s*g α -totally continuous, $f^1(A)$ and $f⁻¹(B)$ are clopen hence closed sets in X. Since X is s normal, there exist disjoint $s * g\alpha$ -open sets U and V

such that $f^1(A) \subset U$ and $f^1(B) \subset V$. There are clopen sets G and H such that $A \subset G$, $B \subset H$ and $f'(\overline{G}) \subset U$, $f⁻¹(H) \subset V$. Then we have, $f⁻¹(G) \cap f⁻¹(H) \subset U \cap V =$ ϕ , which implies $f'(\text{G}\cap\text{H}) \subset \phi$, which implies

 $G \cap H = \phi$. Thus every pair of non-empty disjoint closed sets can be separated by disjoint clopen sets. Therefore Y is ultra-Hausdorff.

Definition **3.31**

A function f: $(X, \tau) \rightarrow (Y, \sigma)$ is called totally $s * g\alpha$ -continuous if the inverse image of every open set of $(Y, σ)$ is a s*gα-clopen subset of $(X, τ)$.

Theorem 3.32

Every totally $s * g\alpha$ -continuous function is $s*g\alpha$ -continuous.

Proof

Let V be a open set of (Y, σ) . Since f is totally s*g α -continuous, $f^1(V)$ is s*g-closed in $(X,$ τ). Since every closed set is $s * g\alpha$ -closed. Hence $f^1(V)$ is s*g α -closed in (X,τ) . Therefore f is s*g α continuous.

Example **3.33**

Let $X = Y = \{a, b, c\}$ with $\tau = \{\phi, X, \{a\}\}\$ and $\sigma = \{\phi, Y, \{a\}, \{a, b\}\}, \sigma^c = \{\phi, Y, \{c\}, \{b, c\}\}.$ The function f: $(X, \tau) \rightarrow (Y, \sigma)$ be defined as $f(a) = b$, $f(b)$ = a and f(c) = c. The s*g α - open sets of (X, τ) are ϕ , $X, \{a\}, \{b\}, \{c\}, \{a, c\}, \{a, b\}.$ Thus f is $s * g\alpha$ continuous but not totally $s * g\alpha$ -continuous. Since the inverse image of the open set $f^{-1}\{a\} = \{a\}$ in (Y,σ) is not s*gα-open in $(X, τ)$.

Definition **3.35**

A topological space (X, τ) is said to be $s*g\alpha$ -connected union of two non - empty disjoint $s*g\alpha$ - open sets.

Theorem **3.36**

A space (X, τ) is $s \ast g\alpha$ - connected if and only if every totally $s * g\alpha$ - continuous function from a space (X, τ) into any T_o space (Y, σ) is a constant map.

Proof

Necessity part

Suppose f: $(X, \tau) \rightarrow (Y, \sigma)$ is a totally $s * g\alpha$ - continuous function, where (Y, σ) is a T_0 space. On the contrary if we suppose that f is not a constant map, then we can select two points x and y in X such that $f(x) \rightarrow f(y)$. Since (Y, σ) is a T_0 space and $f(x)$ and $f(y)$ are distinct points of Y, then there exists an open set G in (Y, σ) containing $f(x)$ but not $f(y)$. Since f is totally s*g α - continuous function, then $f^1(G)$ is s*g α

- clopen subsets of (X, τ) . Clearly x $f^1(G)$ and $f^1(G)$. Now $X = f¹(G) \subset (f¹(G))$, which is the union of two non - empty $s \ast g \alpha$ - open subsets of X. Thus X is not a $s * g\alpha$ - connected space. A contradiction.

Sufficiency part

Suppose (X, τ) is not a s*g α - connected space. Then there exists a proper non-empty $s * g\alpha$ -

CONCLUSION

In this paper we introduced a new class of sets namely $s * g\alpha$ -totally continuous function in topological spaces and using this sets we introduced three new class $s*g\alpha -T_1$, $s*g\alpha -T_2$, $s*g\alpha -T_0$.

REFERENCES

[1] K.Ayswarya, A Study On Group Structure of closed sets in topological space, M.phi dissertation Kongunadu Arts and Science College coimbatore(2014)

[2] P. Bhattacharyya and B.K. Lahiri, Semi-generalized closed sets in topology, Indian J*.* Math*.*, 29(3) (1987), 375- 382.

[3] S. G. Crossley and S. K. Hildebrand, Semi-Topological properties, Fund.

[4] R.Devi, Studies On generalizations of closed maps and homeomorphisms in topological spaces, Ph.D.Thesis, Bharathiar University, Coimbatore(1994).

[5] R. Devi, K. Balachandran, H. Maki and , Generalized \square closed maps and \square -generalized closed maps, Indian J.Pure.Appl.Math.,29(1)(1998),37-49.

[6] R. Devi, H. Maki and K. Balachandran, Semigeneralized homeomorphisms and generalized Semihomeomorphisms in topological spaces, Indian J.Pure.Appl.Math.,26(3)(1995),271-284.

[7] J. Dontchev, On generalizing semi-preopen sets ,Mem. Fac. Sci. Kochi Ser.A,Math.,16 (1995),35-48.

[8] R. C. Jain, The role of regularly open sets in general topology, Ph.D*.* thesis, Meerut University, Institute of advanced studies, Meerut-India,

clopen subset A of X. Let $Y = \{a, b\}$ and $X = \{X, \}$ ϕ , {a}, {b}}.Define f: $(X, \tau) \rightarrow (Y, \sigma)$ by $f(x) = a$ for any x and $f(x) = b$ for any x . Clearly f is a non constant and totally $s * g\alpha$ - continuous map. Clearly (Y, σ) is a T_o space. Thus we have produced a non constant totally $s * g\alpha$ - continuous function from (X, τ) into the T_o space (Y, σ).A contradiction.

(1980).

[9] N. Levine, Generalized closed sets in topology, Rend. Circ. Mat. Palermo, 19(2) (1970), 89-96.

[10] T. Nieminen, On ultrapseudo compact and related spaces, Ann. Acad.Sci. Fenn. Ser. A I Math., 3 (1977), 185 $-205.$

[11] O. Njastad ,On some classes of nearly open sets, Pacific J.Math.,15(1965), 961-970.

[12] T.M.Nour, Totally semi-continuous functions, Indian J. Pure Appl.Math.,26(7)(1995),675-678.

[13] T. Soundararajan, Weakly Housdorff spaces and the cardinality of topological spaces, In : General topology and its relation to modern

analysis and algebra, III Proc. Conf. Kanpur, 1968, Academia, Prague,(1971), 301-306.

[14] M. Stone, Applications of the theory of boolean rings to general topology, Trans. Amer. Math. Soc., 41 (1937), 374.

[15] R. Staum, The algebra of bounded continuous functions into a nonarchimedean field, Pacific J. Math., 50 (1974) , $169 - 185$.

[16] M .K .R .S.Veerakumar, Between g^{*} - closed sets and g-closed sets, Antartica J.Math.,**3**(1)(2006),43-65.

[17] M.Vigneshwaran, A study on $\sqrt[\kappa]{g}$ –closed sets in Topological spaces, M.Sc. Dissertation, Kongunadu Arts and Science (Autonomous),Coimbatore(2006).

[18] M.Vigneshwaran and R. Devi, On $G\Box$ o-kernel in the digital plane, International Journal of Mathematical Archive-**3**(6)(2012),2358-2373.