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Abstract: This paper deals with a new class of sets namely #s*gα-

closed sets in topological spaces and derive the properties of 
#s*gα-closed sets. Also we find the relationship between #s*gα-

closed sets and the other existing sets. Moreover with the help of 
these sets, we introduce three new spaces, #s*gαTb spaces, αgTb 

spaces, sTb** spaces. 
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                                 І.INTRODUCTION 

Levine and A.S.Mashhour [19] introduced semi-continuous 

maps and α-continuous maps respectively.P.Battacharaya and 

B.K.Lahiri [6] introduced semi generalized closed 

sets,H.Maki,R.Devi and K.Balachandran [20] introduced α-

generalized closed sets and generalized α-closed sets 

respectively.R.Devi et.al [9] introduced αg-continuous,gs-

continuous,αg-irresolute and gs-

irresolutemaps.R.Devi,H.Maki and K.Balachandran [11] 

introduced semi-generalized-homeomorphism in topological 

spaces.Recently M.K.R.S.Veerakumar [31]introduced g*-

closed sets and M.Vigneshwaran [34] introduced *gα-closed 

sets in topological spaces.K.Ayswarya [4] introduced s *gα-

closed sets in topological spaces.In this paper, we introduce a 

new class of sets namely 
#
s*gα-closed sets in topological 

spaces and derive its properties.Also we find the relationship 

between
 #

s*gα-closed sets and other existing sets.Moreover, 

with the help of these sets, we introduce three new spaces 

#s*gαTbspace, sTb**space, αgTbspaceand their properties. Also 

we introduce 
#
s*gα-continuous maps, 

#
s*gα-irresolute maps 

and discuss their properties . 

 

                               ІІ.PRELIMINARIES  

Throughout this dissertation (x, τ), (y, σ) and (z, η ) represents 

topological spaces on which no separation axiom are assumed 

unless otherwise mentioned. For a   subset A of space x, τ, 

cl(A) and int(A) denote the closure and interior of A in X 

respectively. The power set of X is denoted by P(X). 

Let us recall the following definitions  

 

 

 

 

Definition 2.1 

A subset A of a topological space (x, τ) is called  

(1) a pre-open set[1] if Aint(cl(A)) and a pre-closed set if 

cl(int(A)). 

(2) a semi-open set[8] if Acl(int(A)) and a semi-closed set if 

int(cl(A))A. 

(3) a α-open set[11] if Aint(cl(int(A))) and a α-closed set[20] 

if cl(int(cl(A)))A. 

(4) a semi pre-open set[1](=β-open[1]) if Acl(int(cl(A))) and 

a semi pre-closed set[2](β-closed[1]) if int(cl(int(A)))A. 

(5) a regular-open set[25] if A=int(cl(A)) and a regular-closed 

set if cl(int(A))=A. 

           The class of all closed(respectively semi pre-closed, α-

closed) subsets of a space (X, τ) is denoted by C(X, 

τ)(respectively SpC(X ,τ),αC(X, τ).The intersection of all 

semi-closed (respectively pre-closed, semi pre-closed and α-

closed)sets containing a subset A of x, τ is called the semi-

closure(respectively pre closure, semi pre-closure and α-

closure) of A is denoted by scl(A)(respectively pcl(A),spcl(A) 

and α-cl(A)). 
Definition 2.2 

            A subset A of a topological space (x, τ) is called  

(1) a generalized closed set (briefly g-closed [7] if cl(A)U 

whenever AU and U is open in(x, τ). 

(2) a semi-generalized closed set (briefly sg-closed) [3] if 

scl(A)U whenever AU and U is semi-open in(x, τ). 

(3) a generalized semi-closed set (briefly gs closed) [4] if 

scl(A)U whenever AU and U is open in(x, τ). 

(4) a generalized α- closed set (briefly gα-closed) [10] if 

αcl(A)U whenever AU and U is α-open in(x, τ). 

(5) a α-generalized closed set (briefly αg-closed) [9] if α 

cl(A)U whenever AU and U is open in(x, τ). 

(6)a generalized semi pre-closed set (briefly gsp-closed)[5] if 

spcl(A)U whenever AU and U is open in(x, τ). 

(7) a generalized pre semi-closed set (briefly ps-closed) [12] if 

spcl(A)U whenever AU and U is g-open in(x ,τ). 

(8) a g*-closed set [18] if cl(A)U whenever AU and U is 

g-open in(x ,τ).  

 (9) a *g-closed set [17] if cl(A)U whenever AU and U is 

ĝ-open in(x, τ). 

International Journal of Advanced and Innovative Research (2278-7844) / # 62 / Volume 5 Issue 2

   © 2015 IJAIR. All Rights Reserved                                                                               62



 

 

 (10) a g
#
-closed set [15] if cl(A)U whenever AU and U is 

αg-open in(x, τ). 

 (11) a g
#
s-closed set [19] if scl(A)U whenever AU and U 

is αg-open in  (x, τ). 

(12) a g
#
α-closed set [13] if αcl(A)U whenever AU and U 

is g-open in (x, τ). 

 (13) a *gα-closed set [21] if cl(A)U whenever AU and U 

is gα-open in (x, τ). 

 (14) a s*gα-closed set [2] if scl(A)U whenever AU and U 

is *gα-open in        (x, τ). 

(15) a ( gsp)*-closed set [6] if cl(A)U whenever AU and U 

is gsp-open in(x, τ). 

 (16) a (gs)*-closed set [14] if cl(A)U whenever AU and U 

is gs-open in (x, τ). 

 (17) a ĝ-closed set [20] if cl(A)U whenever AU and U is 

semi-open in (x, τ). 

 (18) a 
#
g-closed set [16] if cl(A)U whenever AU and U is 

*gα-open in (x, τ). 

(19) a gα-closed set [10] ifα cl(A)U whenever AU and U is 

α-open in (x, τ). 

      The class of all g-closed sets (gsp-closed sets) of space x, τ 

is denoted by     GC(x, τ), (GSPC(x, τ)). 

ІІІ. BASIC PROPERTIES OF 
#
s*g-CLOSEDSETS 

Definition3.1: A subset A of (X, τ) is called a 
#
s*gα-closed set 

if cl (A) U whenever AU and U is s*gα-open in     (X, τ). 

 The class of 
#
s*gα-closed subsets of (X,τ) is denoted 

by 
#
s*gα C(X,τ). 

Theorem 3.2:Every closed set is 
#
s*gα-closed set. But the 

converse need be not true.   

Proof:Let AU and U is s*gα-open. Since A is closed cl(A) = 

AU, it implies cl(A) U. Therefore A is a 
#
s*gα-closed set. 

 The following example supports that a 
#
s*gα-closed 

set need not be a closed set. 
Example 3.3: Let X={a,b,c} with τ={X, υ, {a, b}} and 


c
={X, υ, {c}}  

#
s*gα-closed sets are X, υ, {c}, {b, c}, {a, c} 

  Let A = {b, c} is 
#
s*gα -closed set, but not a closed set in   

(X, τ). 

Theorem3.4: Every 
#
s*gα closed set is *gα-closed set. But the 

converse need not be true. 

Proof: Let AU and U is gα-open. Since every gα-open set is 

s*gα-open, U is s*gα-open. Since A is 
#
s*gα-closed set, 

cl(A)U. Therefore A is *gα-closed set. 

 The following example supports that a
 #

s*gα-closed 

set need not be a *gα-closed set. 
Example 3.5: Let X = {a, b, c, d} with τ={X, υ, {a}, {b, c}, 

{a, b, c}}, and τ
c
={X, υ, {d}, {a, d}, {b, c, d}} 

  #
s*gα -closed sets are X, υ, {d},{a, d},{b, c, d},{a, c, d},{a, 

b, d} 

*gα-closed sets are X, υ, {d}, {c, d},{a, d},{b, d},            {b, 

c, d},{a, c, d},{a, b, d} 

    Let A = {c, d} is *gα-closed set, but not a
 #

s*gα -closed set 

in (X, τ). 

Theorem 3.6: Every 
#
s*gα-closed set is s*gα-closed set. But 

the converse need not be true. 

Proof: Let AU and U is *gα-open. We know that every *gα-

open set is s*gα-open then U is s *gα-open. Since A is 
#
s*gα-

closed set, cl(A)U. We know that every closed set is a semi 

closed set. Hence scl(A)cl(A)U implies scl(A)U. 

Therefore A is an s*gα-closed set. 

 The following example supports that an s*gα-closed 

set need not be a
#
s*gα-closed set. 

Example 3.7: Let X = {a, b, c} with τ={X, υ, {a}} and 

τ
c
={X, υ, {b, c}} 

s*gα-closed sets are X, υ, {b}, {c}, {a, b}, {b, c}, {a, c} 
#
s*gα -closed sets are X, υ, {b, c} 

Let A = {a, b} is s*gα-closed set, but not a 
#
s*gα -closed set in 

(X, τ). 
Theorem 3.8: Every 

#
s*gα-closed set (a) 

#
g-closed set (b)*g-

closed set (c) g*-closed set (d) ĝ-closed set. But the converse 

need not be true. 

Proof:(a)Let AU and U is *g-open. We know that every *g-

open set is s*gα-open then U is s*gα-open. Since A is 
#
s*gα-

closed set, cl(A)U whenever AU and U is s*gα-open. 

Therefore A is a 
#
g-closed set.  

 

(a) Let AU and U is ĝ-open. We know that every ĝ-open set 

is s*gα-open then U is s*gα-open. Since A is 
#
s*gα-

closed set, cl(A)U whenever AU and U is s*gα-open. 

Therefore A is a *g-closed set. 

 

(b) Let AU and U is g-open. We know that every g-open set 

is s*gα-open then U is s*gα-open. Since A is 
#
s*gα-

closed set, cl(A)U whenever AU and U is s*gα-open. 

Therefore A is a g*-closed set. 

 

(c) Let AU and U is semi open. Since every semi-open set 

is s*gα-open set, then U is s*gα-open. Since A is 
#
s*gα-

closed set, cl(A)U. Therefore A is a ĝ-closed set. 

The following examples supports that converse need not be 

true. 
Examples 3.9: (a)Let X={a, b, c} with τ={X, υ, {a},       {b, 

c}} and τ
c
={X ,υ, {a}, {b, c}} 

#
g-closed sets are X, υ, {a}, {b}, {c}, {a, b},{b, c},{a, c} 

#
s*gα -closed sets are X, υ, {b, c} 

Let A = {a, b} is
 #

g-closed set, but not a 
#
s*gα -closed set in 

(X, τ) 

(b) Let X = {a, b, c} withτ={X, υ,{a}, {a, b}} and τ
c
={ X, υ, 

{c}, {b, c}} 

*g-closed sets are X, υ, {c}, {b, c}, {a, c} 
   #

s*gα -closed sets are X, υ, {c}, {b, c} 

 Let A = {a, c} is *g- closed set but not 
#
s*gα-closed set. 

(c)Let X = {a, b, c} with τ={X, υ, {a}, {a, b}} and τ
c
={X, υ, 

{b, c}, {c}} 

g*-closed sets are x, υ, {c}, {b, c}, {a, c} 
  #

s*gα-closed sets are X, υ, {c}, {b, c} 

 Let A= {a, c} is g*-closed set but not 
#
s*gα-closed set. 

(d)Let X= {a, b, c} withτ={X, υ, {a},{b, c}}and τ
c
={X, υ, 

{a}, {b, c}} 

ĝ- Closed sets are X, υ, {c}, {a}, {b}, {c}, {a, b},{b, c}, {a, 

c}} 
#
s*gα-closed sets are X, υ, {a}, {b, c} 
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 Let A = {b} is ĝ-closed set but not
 #

s*gα-closed set. 

 

Theorem 3.10: Every
#
s*gα-closed set is g

#
s closed set. 

Proof:Let AU and U is αg-open.We know that every αg-

open set iss*gα-open. Then U is αg-open.Since A is 
#
s*gα 

closedset, cl (A)U.We know that every closed set is semi-

closed set,scl(A)cl(A)U implies scl(A)U.Therefore A is 

g
#
s-closed set. 

 The converse of the above theorem need not be true 

by the following example. 

 

Example 3.11: Let   X = {a, b, c} with τ={X, υ, {a}, {a, b}} 

and τ
c
={X, υ, {c}, {b, c}, {a, c}} 

g
#
s-closed sets are X, υ, {a}, {b}, {c}, {b, c}, {a, c} 

#
s*gα-closed sets are X, υ, {c}, {a, c}, {b, c} 

Let A = {a} is g
#
s-closed set, but not a 

#
s*gα-closed set in (X, 

τ). 

 

Theorem 3.12:Every 
#
s*gα-closed set is (a)g

#
α-closedset 

(b)
#
gα-closedset(c)gα-closedset(d)αg-closedset. 

Proof:(a)Let AU and U is g-open. We know that every g-

open set is s*gα-openset. Then U is s*gα-open. Since A is 
#
s*gα closed set cl(A)U. We know that every closed set is α-

closed set, αcl (A)cl(A)U implies αcl(A)U. Therefore A 

is g
#
α-closed set. 

 (b) Let AU and U is g
#
α-open. We know that every g

#
α-

open set is s*gα-open then U is s*gα-open.Since A is 
#
s*gα-

closed set, cl(A)U. We know that every closed set is α-

closed set, αcl(A)cl(A)U implies αcl(A)U. Therefore A 

is a 
#
gα-closed set. 

(c)Let AU and U is α-open.We know that every α-open set 

is s*gα-open then U is s*gα-open.Since A is 
#
s*gα-closed set, 

cl(A)U . We know that every closed set is α-closed set, 

αcl(A)cl(A)U implies αcl(A)U. Therefore A is a gα-

closed set. 

(d)Let AU and U is open. Since every open set is s*gα-open 

set, then U is s*gα-open. Since A is 
#
s*gα-closed set, 

cl(A)U. We know that every closedset is α-

closedset,αcl(A)cl(A)U implies αcl(A)U. Therefore A is 

a αg-closed set. 

 The converse of the above theorem need not be true 

by the following        examples. 
Examples 3.13:(a)Let X = {a, b, c} with τ={X, υ, {a},     {a, 

b}} and τ
c
={X, υ, {c}, {b, c}} 

 Here A = {b} is g
#
α-closed set but not a 

#
s*gα -closed set in 

(X, τ). 

 (b) Let X = {a, b, c} with τ={X, υ,{a},{b, c} and  

      τ
c
={X, υ, {a}, {b, c}} 

Here A={c} is 
#
gα-closedset but not a 

#
s*gα-closed set in (X, 

τ). 

(c)Let X = {a, b, c} with τ={X, υ, {a}, {a, b}} and  

    τ
c
={X, υ, {c}, {b, c}} 

Here A= {b} is gα-closed set but not a 
#
s*gα-closed set in (X, 

τ). 

(d)Let X = {a, b, c} with τ={X, υ,{a},{b, c}} and  

     τ
c
={X, υ, {a}, {b, c}} 

Here A = {b} is αg-closed set but not a 
#
s*gα -closed set in 

(X, τ). 

Theorem 3.14:Every 
#
s*gα-closed set is (a)gs-closed set 

(b)gsp-closed set 

 

Proof:(a)Let AU and U is open.We know that every open 

set is s*gα-open. Then U is s*gα-open. Since A is 
#
s*gα-

closed set, cl(A)U. We know that every closed set is semi-

closed set, scl(A)cl(A)U implies scl(A)U. Therefore A is 

gs-closed set. 

 

 (b)Let AU and U is open.We know that every open 

set is s*gα-open,then U is s*gα-open.Since A is 
#
s*gα closed 

set,cl(A)U.We know that every closed set is semipre-closed 

set, spcl(A)scl(A)cl(A)U implies spcl(A)U. Therefore 

A is gsp-closed set. 

 The converse of the above theorem need not be true 

by the following example. 

 
Examples3.15: (a)Let   X = {a, b, c} with τ={X, υ, {a}, {a, 

b}} and τ
c
={X , υ, {c}, {b, c}} 

gs-closed sets are X, υ, {b}, {c}, {a, b}, {b, c}, {a, c} 
#
s*gα -closed sets are X, υ, {c}, {b, c} 

Let A = {b} is gs-closed set, but not a 
#
s*gα -closed set in (X, 

τ). 

  (b)Let X ={a, b, c} with τ={X, υ, {a}, {b}, {a, b}} 

and τ
c
={X, υ, {c}, {b, c}{a, c}} 

gsp-closed sets are X, υ, {a},{b},{c},{b, c},{a, c} 
#
s*gα-closed sets are X, υ, {c}, {a, c}, {b, c} 

Let A= {a} is gsp-closed set, but not a 
#
s*gα -closed set in  

(X, τ). 
Theorem 3.16:Every (gsp)*-closed set is a 

#
s*gα-closed set 

.But the converse need not be true. 

Proof:Let AU and U is s*gα-open. Since every s*gα-open 

set is gsp-open set, then U is gsp-open .Since A is (gsp)*-

closed set, cl(A)U. Therefore A is a 
#
s*gα-closed set. 

 The converse of the above theorem need not be true 

by the following 

 
Example3.17: Let   X = {a, b, c} with τ={X, υ, {a},        {a, 

b}}and τ
c
={X, υ, {c}} 

 (gsp)*-closed sets are X, υ, {c} 
#
s*gα -closed sets are X, υ, {c}, {b, c}, {a, c} 

          Here A= {b, c} is
#
s*gα-closedset but not a (gsp)*-

closed set in (X, τ). 
Theorem 3.18:Every (gs)*-closed set is 

#
s*gα-closed set.But 

converse need not be true. 

Proof:Let AU and U is s*gα-open. Since every s*gα-open 

set is gs-open set, then U is gs-open .since A is (gs)*-closed 

set, cl(A)U. Therefore A is a
#
s*gα-closed set. 

 

 The converse of the above theorem need not be true 

by the following. 

Example 3.19: Let X= {a, b, c, d} with τ={X, υ, {a}, {b, 

c},{a, b, c}} and τ
c
={X, υ, d, {a}, {a, d}, {b, c, d}}  

 (gs)*-closed sets are X, υ, {d}, {a, d}, {b, c, d} 
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#
s*gα-closed sets are X, υ, {d}, {a, d}, {a, c, d},{b, c, d},{a, 

b, d} 

        Here A= {a, c, d} is 
#
s*gα -closed set but not a (gs)*-

closed set in (X, τ). 

Theorem 3.20:If A and B are 
#
s*gα-closed sets then AB is 

also 
#
s*gα-closedset.   

Proof:Let A and B be 
#
s*gα-closed sets .Let ABU, then U 

is s*gα-open. Since   A and B are 
#
s*gα-closed sets cl(A)U 

and cl(B)U. This implies thatcl(AB) =cl(A)cl(B) implies  

cl(AB)U. Therefore AB is 
#
s*gα-closed set. 

Remark3.21:The intersection of two 
#
s*gα-closed sets is also 

a 
#
s*gα-closed sets. 

Theorem 3.22:If A is a 
#
s*gα-closed set of (X, τ) such that 

ABcl(A) then B is also a
#
s*gα-closedset. 

Proof:Let U be a s*gα-open set of (X, τ) such that BU then 

AU where U is s*gα-open. Since A is 
#
s*gα-closed, 

cl(A)U   then cl(B)U. Hence B is a 
#
s*gα-closed set. 

Theorem 3.23: If A is a 
#
s*gα-closed set of (X, τ) then 

cl(A)\A does not contain any non-emptys*gα-closedset. 

Proof:Let F be a s*gα-closedset of (X, τ) such that Fcl(A)\A 

then AX\F.Since A is a 
#
s*gα-closedset cl(A)x\F this 

implies Fx\cl(A).Hence F(A\cl(A))(cl(A)\A)=υ 

 Therefore F=υ and cl (A) does not contain any non -

empty s*gα-closed set. 
Theorem3.24:If a set A is 

#
s*gα-closed set of (x, τ) then 

cl(A)A contains no  non empty closedset in (x, τ)  

Proof:Suppose that A is 
#
s*gα-closed set. Let F be a closed 

subset of cl(A)A. Then AF
c
. But A is 

#
s*gα-closed set, 

therefore cl(A)F
c
. Consequently,     F (cl(A))

c
. We already 

have Fcl(A).Thus  F cl(A) (cl(A))
c
 and F is empty. 

 The converse of the theorem need not be true by the 

following example. 

Example 3.25:Let X={a, b, c} with τ = {X, υ, {a}}.Then 
#
s*gαC(X) = {X, υ, {b, c}} If A = {b}, then cl(A)A = {c} 

does not contain any nonempty closed set. But A is not 
#
s*gα-

closed set in (x, τ). 
Theorem3.26:A set A is 

#
s*gα-closed set if and only if 

cl(A)A contains no nonempty s*gα-closed set. 

Proof: Necessity 

 Suppose that A is 
#
s*gα-closed set. Let S be a s*gα-

closed subset of cl(A)A. Then AS
c
. Since A is 

#
s*gα-

closed, We have cl(A)S
c
. Consequently,                        S 

(cl(A))
c
. Hence Scl(A) (cl(A))

c
= υ. Therefore S is empty.  

 Sufficiency 

 Suppose that cl(A)A contains no nonempty s*gα –

closed set. Let AG and G be s*gα-open. If cl(A)G, then 

cl(A)G
c
 υ. Since cl(A) is a closed set and G

c
 is a s*gα-

closed set, cl(A)G
c
 is a nonempty s*gα-closed subset of 

cl(A)A, this is a contradiction. Therefore cl(A)G and hence 

A is 
#
s*gα-closed set.   

Theorem 3.27:Let AYX and suppose that A is 
#
s*gα-

closed in (X, τ). Then A is
#
s*gα-closed relative to Y. 

Proof: Let AYG, where G is s*gα-open in (X, τ). Then 

AG and hence cl(A)G. This implies that Ycl(A)YG. 

Thus A is 
#
s*gα-closed relative to Y. 

Theorem3.28:If A is a s*gα-open and 
#
s*gα-closed in (X, τ), 

then A is closed in (X, τ).  

Proof: Since A is s*gα-open and 
#
s*gα-closed, cl(A)A and 

hence A is closed in (x, τ).  
Remark 3.29: 

#
s*gα-closed set is independent of semi-closed 

set and -closed set. 

 Let X = {a, b, c} with τ = {X, υ, {c}} 

 Semi-closed sets are X, υ, {b}, {c}, {b, c} 

 -closed sets are X, υ, {b}, {c}, {b, c} 
 #

s*gα-closed sets are X, υ, {b, c} 

Here B = {b} is Semi-closed set and -closed set but not a 
#
s*gα-closed set. 

 Let X = {a, b, c} with τ = {X, υ, {a, b}} 

 Semi- closed sets are X, υ, {c} 

 -closed sets are X, υ, {c} 
 #

s*gα-closed sets are X, υ, {c}, {b, c}, {a, c} 

Here B = {b, c} is 
#
s*gα-closed set but not a Semi-closed set 

and -closed set. 

                                                                                                       

ІV. APPLICATIONS OF 
#
s*g-CLOSEDSETS 

Definition 4.1:A space (x, τ) is called a #s*gαTb-space if every 
#
s*gα-closed set is closed. 

Definition 4.2:A space (X, τ) is called a αgTb space if every 

αg-closed set is 
#
s*gα-closed set. 

Definition 4.3:A space (X, τ) is called a sTb**space if every 
#
s*gα-closed set is *gα-closed set. 

Theorem 4.4:If (x, τ) is a #s*gαTb space then every singleton of 

X is either 
#
s*gα-closed or open. 

Proof: Let xX and suppose that {x} is not s*gα-closed set of 

(X, τ).Then X{x} is not s*gα-open set. This implies that X is 

only s*gα-open set containing X{x}.SoX{x} is a 
#
s*gα-

closed set of (X, τ).Since (X, τ) is a #s*gαTb-space, X{x} is 

closed set or equivalently {x} is open set in      (X, τ).  
Theorem 4.5:If (x, τ) is a αgTb space then every singleton of 

X is either closed or 
#
s*gα-open. 

Proof:Let xX and suppose that {x} is not closed set of (X, 

τ).Then X{x} is not open. This implies that X is only open 

set containing X{x}.So X{x} is a αg-closed set of (X, 

τ).Since (X, τ) is a αgTb space, X{x} is a 
#
s*gα-closed set or 

equivalently {x} is 
#
s*gα-open set.  

 

                                CONCLUSION 

In this paper, we introduce a new class of sets namely 
#
s*gα-

closed sets in topological spaces and derive the properties of 
#
s*gα-closed sets. Also we find the relationship between 

#
s*gα-closed sets and the other exisisting sets. Moreover with 

the help of these sets, we introduce three new spaces , #s*gαTb 

spaces, αgTb spaces, sTb** spaces.  
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