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Abstract-Fading phenomena impact the performance of 
wireless communication systems.  We proposed Modified 
Hidden Semi-Markov Model (MHSMM) for modeling the 
flat fading envelope process.  The properties of the 
envelope process are dominated by the physical fading 
processes and speeds of the mobile terminal.  Thus, the 
statistics of the fading process may be non-stationary, due 
to different fading conditions over some time durations.  
The MHSMM incorporate these time-variant statistics of 
the envelope process in a single model, which facilitates 
computations of the envelope probability density function 
and the auto correlation function.  The study provides 
estimation schemes by simulation.  It verifies the 
advantages of MHSMM and also the effectiveness of the 
associated parameter estimation schemes. 
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I. INTRODUCTION 
 Modeling of the fading in the communication 
channels is of interest for a long time. A common 
feature in these models is that all of them have 
memory. Gaussian process modeling, though attempted 
is difficult in this type of systems. HMM has a unique 
feature of helping in the evaluation of various 
probabilistic features through the EM algorithms. One 
more important factor is the simplicity of the model for 
which HMM is more appropriate and hence this 
attempt. 

II. FADING CHANNEL MODEL 
 Lab x(t) be low pass equivalent of the 
communicatedsignal with the inphase componentxI(t) = 
Re{x(t)} and quadrature compound xQ(t)=Im{x(t)}. 
Consider a frequency non selective channel with 
additive noise n(t). This channel is modelled as: 
[J.G.Proakis [15]]. 
 y(t) = c(t) x(t) + n(t)  (1) 
 Where,y(t) is the acknowledged signal and the 
fading is modelled by the complex random process c(t). 
Different models are there which are based on different 
assumptions on c(t) and n(t). 
 Normally it is assumed that n(t) is zeromean 
complex AWGN(additive white Gaussian noise) and 
c(t) is complex stationary zero-mean Gaussian process 
with identical and independently distributed (i.i.d) real 
and imaginary parts. The p.d.f. of a sequence CK=(c(t1), 
c(t2), …, c(tk)) has the form. 
f(CK)=(2 π)-K |D| exp (-0.5 Re {CK D C୏

ୌ }) (2) 

 Where |D| denotes the determinant of D, C୏
ୌ 

denotes the conjugate transpose of CK, and D-1 is the 
process variance co-variance matrix 
D-1 = [R(tj – ti)]K,K   (3) 
 Where R(t) is the auto correlation function of 
the process. The multi- dimensional distribution has a 
related form. 
 This model is called a Rayligh fading since its 
envelope α(t) = |C(t)| is Rayligh distributed 
 Pr{ α (t) < α} = 1 –exp (-0.5 a2| ) 
 
Different fading models are based on the different 
basic conventionsnearly the power spectral density S(f) 
or, equivalently, the auto correlation function R(τ) of 
c(t): 
Here we use 

S(f) = /π ඥfୈ
ଶ−f ଶ, R(τ) =  J0(2π fD | τ |)     (4) 

 Here J0(.) is the Bessel function of the first 
kind, fD is the maximal Doppler frequency, and  is the 
power of the fading process c(t). We call this model as 
the clarke’s model [6]. It is known that stationary 
Gaussian stochastic process can be modelled by 
filtering white Gassian noise (t) [15] 
 On the other hand, it could be simulated by 
the next equation 

 C(t) = 2 ∑୒
୧ୀଵ ej(iπ|N+1) Cos (2πfDt Cos 

ଶ஠୧

ସ୒ାଶ
) + √2 cos2π fDt             (5) 

 In applied systems, the communicated signal 
x(t) has the form 

 x(t) = ∑୩ xk P(t-kΔ)              (6) 

 Where 1/Δ is the symbol rate, xK is the 
transmitted symbol value, a complex number, matching 
to a point of the signal collection, and p(t) represents 
the shaping pulse. If we assume that C(t) is slowly 
varying so that it is closely constant above a symbol 
duration Δ, the sampled output of the coherent 
demodulator trailed by the receiver matched filter 
which can be estimated by  

 Yk = ckxk + nk             (7) 
 Where nk is the sample of the filtered 
Gaussian noise and ck = c(kΔ) is a sample of the fading 
process. 
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III. FADING ENVELOPE MODEL 
 For relaxed slow fading, the performance of 
communication system depends mainly on the value of 
the envelope α(t) = |c(t)|.  The envelope could be 
defined by its multidimensional p.d.f. which we can 
derive from (2).  That is 

f(αk)=(2π)-k |D| α1 α2 … αk׬
ଶ஠

଴
(k) …  

׬
ଶ஠

଴
exp(-0.5 αk G α୩

୘)dθ1 ... dθk (8) 
Here αi = α(ti), θi= θ (ti), G is the matrix whose 

i, jth element is  
gij = dij cos (θi- θj), where dij is the element in 

the ith row and jth column of D, and αk=(α1 α2… αk) 
If  k=1, we have the Rayleigh p.d.f. 
f(α1) = α1

-1exp (-0.5 αଵ
ଶ/),  

  = R(0) = 2            (9) 
If k=2, we have, the Joint p.d.f 

f(α1 α2) =  
஑భ஑మ

మ(ଵି ஛మ)
  exp  

                     [ -  
஑భ

మା ஑మ
మ

ଶ(ଵି ஛మ)
 ] . I0 (

஑భ஑మ



஛

ଵି ஛మ )     (10) 

Where λ = R(t2-t1) / R(0), I0 (.) is the modified 
Bessel function of the first kind. 

The above model is difficult to use in 
applications in which distribution of high-dimension k 
is needed. In such cases, the Monte Carlo method can 
be applied, but the HMM is simpler to apply. 

IV. MARKOV MODELS 
(i)   Multiple Markov chains 
 Multiple Markov processes zଵ

ஶ are processes 
with finite memory. If the process has memory m, the 
conditional p.d.f. of zt given all the past observations 
zଵ

୲ିଵ, depends only on the m previous observations 

z୲ି୫
୲ିଵ  (where z୧

୨ denote zi, zi+1,.. zj), ie. 
 f(zt| zଵ

୲ିଵ) = f (zt / z୲ି୫
୲ିଵ  ) 

Since the correlation function R(τ) tends to zero and ck 
is Gaussian it can be approximated with a Markov 
process if m is large enough so that R(m Δ)  0 (since 
ck and ck+m become uncorrelated and hence 
independent). The envelope transitional PDF has the 
form 
 a(αK |α୩ି୫

୩ିଵ ) = f (zt / z୲ି୫
୲ିଵ  ) 

 Since the correlation function R(τ) tends to 
zero and ck is Gaussian it can be approximated with a 
Markov process if m is large enough so that R(m Δ)  
0 (because ck and ck+m become uncorrelated and hence 
independent). The envelope transitional p.d.f has the 
form 
 a(αk |α୩ି୫

୩ିଵ ) = f(α୩ି୫
୩ ) / f(α୩ି୫

୩ିଵ )       (11) 
 whereα୩ି୫

୩ିଵ  = (αk-m , αk-m+1, … αk-1). 
Thememory size m of the process could be 
strongminded using an estimate accuracy measure (an 
example is given in section (ii). For the simple Markov 
Process (m=1) the transition p.d.f is the Ricianp.d.f. 
 If we perform the envelope quantization into 
N levels, the quantized process {ρk} can be 
approximated by the Markov Chain with N states. In 
particular, for the simple Markov Chain (m=1) we have 
the transition probabilities. 
aij = ׬

୯ౄ,౟
୯ై,౟

׬
୯ౄ,ౠ

୯౪,౟
f(α1, α2) dα1,  

                         dα2 / ׬
୯ౄ,ౠ

୯ై,౟
f(α) d(α)          (12) 

where f(α1, α2) is given by (10).  If the  quantization   
intervals  are  small,   we can write aij = a(ρj|ρi) (qH,j – 
qL,j), for j = 1…N and aiN = 1 – ∑୒ିଵ

୧ୀଵ aij. The first-
order approximationmodel is satisfactory for fading of 
Rayligh whose density of power spectral is given by 
(4). This estimate, moreover, is reasonable for 
comparatively short intervals only. 
 To approximate the Bessel function coming 
out of (4) we need Markov Chains with large memory. 
Since the number of states grows exponentially with 
the process memory, this approach is not practical. 
(ii) Quantized Autoregressive and Moving Average 
(ARMA) using the standard methods of the infinite 
impulse response (IIR) filter design [7] we can 

approximate the fading power spectral density with the 
function.   

S(f) = 
| ∑ ୢ౟

ౌ
౟సబ ୸౟

మ|మ

|ଵା∑ ୦౟୸౟
ౌ
౟సభ |మ , d0 ≠ 0                       (13) 

Here z = e-2πif. In the case c(t) can be modelled by the 
complex ARMA process 
Ck = ∑୔

୧ୀଵ hick-i +vk, vk = ∑୯
୧ୀ଴  dink-i(14) 

 whereni,   are i.i.d.   Gaussian  variable.   If  q 
= 0  we have a AR process (vk=do nk). The ARMA 
process of approximation of fading is a special case of 
a Markov process whole state is defined by the vector 
c୩ି୮

୩ିଵ = (ck-p, ck-p+1, …, ck-1),  

n୩ି୯
୩ିଵ=(nk-q, nk-q+1,…, nk-1).  For obtaining the Markov 

chain with the finite number of states, we need to 
quantize these vectors. This approach is more directly 
related to approximating the auto-correlation function 
than the one considered in this previous section. Apart 
from this, it allows us to use the standard methods of 
filter design for building the model. In Butter worth 
filter [2,14] we have a simple markov process. The 
fading envelope αk= |ck| is a function of the Markov 
Chain and, hence, it is a special case of an HMM. The 
ARMA model complexity grows linearly with process 
memory. This model is difficult to use for calculating 
model statistics.   As in the case of the multiple  
Markov  chains, the size of this model  transition  
probability  matrix  grows exponentially with the 
process memory. The matrix is large, but sparse. 
 (iii)   Birth-Death Process 
 Birth and Death processes are a special case of 
a Markov model [17, 22]. These models assume that 
the quantized fading amplitude from the current ith 
level can jump only to the adjacent levels, ie. aij=0 if |i- 
j|>1. If aii is large, this model allows us to model a 
slowly varying processes. 
 It is possible to improve this model by 
splitting each state i into tw is and ie, depending on 
thetransition slope [17]. Here is corresponds to the start 
of fading below the level qi and ie corresponds to its 
end.
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 The accuracy of this model depends on the 
selection of quantization levels. The quantization levels 
must satisfy two conditions: aij given by (12) should be 
close to zero for |j-1|>1 and the original model state 
duration distributions should be close to the 
exponential distributions.  It is difficult to satisfy these 
two conditions. In order to fit the exponential state 
duration the number of quantization  levels must be 
large, but in this case the probabilities aij of transitions 
to the nonadjacent levels (|i-j|>1) are not negligibly 
small. The model approximation can be improved by 
allowing nonadjacent level jumps. 
(iv)  Monte Carlo method 
 Since it is difficult to evaluate the integrates 
which are needed for the Markov Process 
approximation, the model parameters can be estimated 
using computer simulation. After sampling and 
quantizing the envelope α(t)=|c(t)| we obtain the 
sequence ρଵ

୘. Now we can apply the methods of fitting 
Markov Chains to experimental data as given in [6]. 
The state transition probabilities are estimated by 
 aො ij = nij | ni, ni = ∑୬

୨ୀଵ nij         (15) 
 Where nij is the number of transitions from 
state i to state j. 

V. MODELING OF FADING BY HMM 
 A HMM is a probabilistic function of a 
Markov Chain and can be defined as {S, X, π, A, B(x)} 
where S={s1, s2,…, sn} is the set of states of the 

Markov chain, X is the HMM output (observation) set, 
π is a vector of state initial probabilities, A=[ai, j]n, n   is  
a  matrix of  state  transition probabilities aij=Pr{Sj |Si}, 
and B(x)=diag {bj (x)} is a diagonal matrix of the 
output xX conditional probability densities in state sj.  
If X is discrete, B(x) is a matrix of probabilities 
bi(x)=Pr{x|sj} we denote the states by their indexes 
(si=i). 
 Alternatively, HMM can be represented by the 
so-called state space equations. 
 Uk+1 = G(uk, ߦk)         (16) 
 xk = H(uk, ηk)         (17) 
 whenߦk and ηk are  i.i.d variable. Indeed, it 
follows from (16) that {uk} is a Markov Process, 
generally with an infinite number of states. If G(u, v) 
has a finite discrete range, however, then we have a 
Markov Chain with the finite number of states and 
state-transition probabilities. 
aij=Pr{uk+1 = j |uk= i}= Pr{G(i, ߦ) = j}    (18) 
 According to (17), observations xK are 
conditionally independent variable, given the state 
sequence, and have the following p.d.f.: 
       Fi(x) =  Pr{xk<x|uk=i) = Pr{H(i, η) < x} (19) 
 Conversely, for any HMM we can find G(i, ߦ) 
and H(i, η) by inverting (18) and (19), respectively, 
 To know the limitations of HMM 
approximations, we need to know about the auto 
correlation function of HMM’s. 

A. Autocorrelation Function of HMM 

 To compute the auto correlation function 
 R(τ) = E(xk, xk+τ) 

We evaluate the probability  densities  p(xଵ
୲ )  

of a  HMM output  sequences xଵ
୩ = (x1, x2, …, xk).  

These probability densities have the form [21]. 
 p(xଵ

୩)= π P(x1) P(x2) … P(xk) 1= π 
∏୩

୧ୀଵ P(xk)1      
 (20) 
where P(x) = AB (x) is the matrix of p.d.f of x and 1 is 
the column matrix of ones 
 Using these equations, we can write 
 R(O) = π E(x2)1, R(τ) = πE(x) Aτ-1 E(x)1, 
 R(-τ) = R τ, for τ>0 
Where 

E(x) = ׬
ஶ

ିஶ
x P(x)dx, E(x2) = ׬

஑
ି஑

x2 
P(x)dx 
are the matrix expectations of x and x2, respectively. 
 It follows from these equations that the z-
transformation of R(τ) for τ>0 is a rational function. 
R(z)=∑ஶ

தୀଵ R(τ) z-τ = π E(x) (Iz-A)-1 E(x)1    (21) 
Expanding it into partial fractions we obtain 

R(z) = ∑୰
୨ୀଵ ∑

୫ౠ
୧ୀଵ Dij (z-λj)

-i          (22) 
 Where λj are the eigen values of the matrix A.  
Thus 

R(τ) = ∑୰
୨ୀଵ ∑

୫ౠ
୧ୀଵ Dij  ( )୧ିଵ

தିଵ λ୨
தି୧ , τ > 0     (23) 

 In particular, if all the eigen values are 
different, R(τ) is a mixture of exponential functions. 
 R(τ) = ∑୰

୨ୀଵ D1jλ୨
தିଵ , τ > 0         (24) 

If follows  from  these  equations  that a  
HMM  power spectral  density is  a rational  function 
for z = eത2πjf 

S(f) = πE(x2) -[πE(x)1]2 + π E(x) [I-Qz)-1 + (I-
Qzത1)ିଵ]E(x) 1 

where 
Qτ-1 = Aτ-1 – 1 π 
According to (23), the autocorrelation 

function must have the form 
R(τ) = ∑୰

୨ୀଵ  [Pj(τ) Cos γjτ + Qj(τ) sin γj τ] q୨
த 

, τ > 0  
wherePj(τ) and  Qj(τ)   are  polynomials qj = 

|λj| and γj = arg(λj). If all eigenvalues are different R(τ) 
takes the form: 

R(τ) = ∑த
୨ୀଵ Pjq୨

|த| , Cos γjτ. 
 This class of functions are rich enough to 

approximate any autocorrelation function. Let us now 
have different methods of approximating the fading 
process with HMM’s. 

VI. PARAMETER ESTIMATION FOR HMM 
 Once a class of models are selected, we have 
to fit a model from this class to the fading process.  
There are several methods of fitting the model. 

A. Parameter estimation by the method of moments 

 The method of moments consists of equating 
the moments of the two models and solving the 
corresponding equation.  For easily solving one of the 
models is represented by its experimental data.  For 
example an approximation by Rayleigh fading by a 
HMM [17] 
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 There are several problems with the method of 
moments one of the problems is that the system of 
equations for the moments is often ill posed.  The 

moments are the same for quite different models.  The 
model structure is usually selected using our intution 
and the model accuracy must be evaluated separately.  

The other problem is that the moment selection is quite 
arbitrary.  For example, we can find a HMM whose 
autocorrelation function is close to that of the fading 
process.  However, this does not mean that the 
multidimensional probabilities associated with these 
processes are close. 
 Hence, the method of moments could be used 
for selecting initial values of the model parameters 
which are then improved by more sophisticated 
statistical algorithms. 

B. Approximating Multidimensional probability 
Densities 

 One of the most powerful methods of 
approximating a stochastic process with a HMM 
consists of fitting multidimensional probability 
distributions of a HMM to that of the original process.  
The HMM parameters can be obtained as those which 
minimize the Kullback-Lecbler divergence 
 θ = arg min K(f || pθ)         (25) 

where K(f || pθ) = ׬ଡ଼ౡ f(xଵ
୩) log

୤(୶భ
ౡ)

୮(୶భ
ౡ)

 d xଵ
୩     (26) 

 f(.) and pθ(.) are given by (8) and (20), 
respectively and θ is the HMM parameter vector.  The 
minimum in (25) can be obtained iteratively by the EM 
algorithm [21]: its version for fitting HMM’s is called 
the Baum-Welch algorithm [1].  The computational 
efficiency of the algorithm depends on the nature of the 
statistical data.  For slowfading, a HMM approximation 
should be close to the birth-and-death process.  Since 
the model matrix is sparse, direct application of the 
previous equations for the slow fading data is very 
efficient we can improve the algorithm efficiency by 
using the matrix fast exponentiation [21].  Another 
improvement can be achieved by taking advantage of 
the following property of the Baum-welch algorithm if 
aij,p= 0 at some iteration step p, their aij,p+1=0.  Hence, 
at each interation we can replace small elements with 
zeroes and apply the sparse matrix multiplication 
algorithms. 
 Alternatively, we can start with the birth-and-
death process approximation.  If the state transitions  
satisfy the  markovian property, but the state duration 
distributions are not exponential, we have a semi-
markov process approximation which can be 
transformed into a HMM as given below [19]. 

  
(27) 

Let be the transition process transition probability 
matrix.  Suppose that we are able approximate the state 
duration distributions with the phase-type matrix-
geometric distribution. 

 pi(x) = iA୧
୶ିଵbi   (28) 

 Where Ai is a square matrix, i, is a row 
vector, and bi is a column vector such that 

 E=    
 
 
 is a stochastic matrix, that is all its elements 
are non-negative and each row sums to one Ei1=1.  
Then the semi-Markov process is equivalent to a HMM 
whose state transition probability matrix is given by 

 

In the above, the diagonal matrices Ai 
represent the transitions between states of the HMM 
that correspond to the ith quantization level of the 
fading process, ie the probability of observing the level 
in those states is equal  to one. 

The matrix geometric distribution parameters 
can be estimated using the Baum-Welch algorithm if 
we notice that the state holding process is a binary 
HMM  where state transition probability matrix is Ei. 

To illustrate this method, we use simulation. 
The fading process is simulated using the 

Ricianprocess, with its acf as described in clarke [3].  
The Rician marginal envelope distribution is taken as 

fRice(x) = 
ଶ(୩౎ାଵ)୶


  exp (-k- 

(୩౎ାଵ)୶మ


) x Io 

              (2xට୩౎(୩౎ାଵ)


 ) ,           (30) 

 where x ≥ 0, kR ≥ 0, Ω ≥ 0. For a transmitter 
with the carrier frequency fc, the mobility speed v, and 
the speed of the electromagnetic wave c, the maximum 
Doppler frequency shift fD in the clarke model is 
expressed as fD=vfc/c. The envelope process is 
simulated to be piece-wise stationary, with different 

Ai bi 
i 0 

0 aത12  … … aത1m 

aത2  0 … … aത2m 

… … … … … 

… … … … … 

aതm1 aതm2 … … 0 
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sets of parameters in the Rician process and the 
clarkeacf at different states.  The lognormal 
distribution is used to model the state duration pdf as 

flognormal (t; ln, ) = 
ୣ୶୮ [ି(௟୬(୲)ି೗౤)మ/(ଶమ)]

୲√ଶ஠
 ,  (31) 

 where 0 ≤ t <∞ ≤ ln ≤ ∞, ≥ 0 
 In the GSM system [8], the normal frequency 
is 900 MHz. The power level can be from 39 dbm to 
5dbm. Thus, a 10 db difference between the LOS and 
the NLOS assumption is apt and reasonable. There are 
four states in the simulation, described as follows. 
State: 1The mobile is assumed to be moving in a high 
speed at 30 mls, in the NLOS scenario.  The mean of 
the received signal envelope is -10 db, with respect to 
the reference level.  Based on the 900 MHz of the 
GSM carrier frequency, the Doppler shift is fD=90 Hz.  
Since it is in the NLOS scenario, a reasonable value of 
KR in the Rician process is taken to be 1, ie. no 
dominant components in the scattered signals.  The 

state duration is generated by the lognormal 
distribution with 10 second as mean, and the 
parameters (lr,) = (2, 0.7779) in (31). 
State : 2   The mobile is assumed to be moving in a 
high speed at 30m/s in the LOS scenerio. The mean of 
the received signal envelope is odb, ie., equal to the 
reference level. The Doppler shift is fD = 90Hz. 
Because of the LOS scenario, the KR in the Rician 
process is taken to be 10, ie., the dominant component 
has the envelope 10 times larger than the envelopes of 
the scattered signals.  The state duration is generated 
by the lognormal distribution with a mean equal to 30 
seconds, with parameters of (ln ,)=(2.5, 0.9954) in 
(31). 
State 3:   The mobile is assumed to be moving in a low 
speed at 3 m/s, in the NLOS scenario. The mean of the 
received signal envelope is -10 db.  

 
The Doppler shift is fD=9 Hz. Due to the NLOS 
scenario, the KR in the Rician process is taken to be 1.  
The state duration is generated by the lognormal 
distribution with a mean of 50 seconds, with 
parameters of (ln ,) = (3, 0.8958) in (31). 
STEP : 4   The mobile, here is, assumed to be moving 
in a low speed at 3 m/s, in the LOS scenario. The mean 
of the received signal envelope is 0db. The Doppler 
shift is fD=9 Hz. In view of the LOS scenario, the KR in 
the Rician process is taken to be 10. The state duration 
is generated by the lognormal distribution with a mean 
of 70 seconds, with parameter values (ln ,) = (3.5, 
0.6146) in (31). 
 The state transition probability is taken as 

P =   
   
 Which specifies the steady state probability to 
be π = [0.2528  0.2336 0.2252 0.2884].  In our 
simulation, the envelope process is generated by the 
above parameters inside state 1 to 4, with state 
transitions governed by P.  The initial state is generated 
by π.  The envelope process is simulated for 10398 
seconds, where 400 states are realized.  The envelope 
process is sampled at 1000 samples/second.  After 
obtaining the envelope sequence, we estimated the 
MHSMM (Modified Hidden Semi-Markov Model) 
parameters by the sequence segmentation step given 
below. 

C. MHSMM Definition and notations: 

 The MHSMM consists of many states with an 
individual stationery process representing each state. 
Embedded inside each state is a random process with 
its own statistics.  Transitions among the states are 
specified by the transition probability matrix (tpm).  An 
example of a four-state MHSMM is illustrated in Fig.1.  
The notations are explained as follows: 

i. The number of states is denoted by M. The M 
states of the MHSMM are denoted by {S1, 
S2,…, SM}.  The time duration from the 
starting of one state to the end of the state is 
defined as one epoch.  The state in the ith 
epoch is defined as qi.  The duration of the ith 
epoch is denoted as τi. 

ii. The MxMtpm is denoted by A.  The elements 
in A are denoted as aij, where 

 aij = P(qI+1 = Sj / qI = Si) for any i, j, 1 ≤ i, j ≤ 
M, and I is the index of any valid epochs.  
Since the state duration is explicitly specified 
in the MHSMM, without any loss of 
generality, we assume that the state self-
transition probability to be zero, ieaii=0 for 
any i, 1 ≤ i ≤ n. 

iii. The 1xM steady state probability vector of the 
{S1, S2, …, SM} states is denoted by π = [π1S1, 
π2S2, …, πMSM], where πi is the steady – state 
probability of Si for any valid i. 

iv. The state duration pdfs corresponding to {S1, 
S2, …, SM} are individually denoted by 
{Pୢ ୳୰,ୱభ(౪)

, Pୢ ୳୰,ୱమ(౪)
,…, Pୢ ୳୰,ୱౣ(౪)

}, for any i, 1 

≤ i ≤ M, the Pୢ ୳୰,ୱ౟(୲) can be interpreted as the 
p.d.f of an epoch length conditional on the 
state Si. 

v. The acfs corresponding to the states of {S1, S2, 
…, SM} are individually denoted by {Rୱభ

(t), 
Rୱమ(t), …, Rୱ౉(t)} are denoted by {Pୱభ(x), 
Pୱమ(x), …, Pୱ౉(x)}individually. For the 
purpose of modeling the channel gains 
represented 

byth MHSMM, those {x1, x2, …, xn} can be seen as the 
rvs representing the observable outputs of the 

MHSMM. The realization of the rvs are denoted by 
{x1, x2,…,xM}. 

  0 0.21 0.21 0.62 

0.32   0 0.52 0.21 

0.32 0.32   0 0.41 

0.41 0.41 0.21   0 
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Based on the above notations, the following 
quantities can be derived. 

1. For any valied state, steady – state percentage of 
time in the state Si is given by 

 
஠ୗ౟ౚ౫౨ (ୗ౟)

ஊ஠౏౟ౚ౫౨ (ୗ౟)
           (6.1) 

2. The overall envelope marginal p.d.f. can be 
computed by  

Px(x) = 
஠౏భౚ౫౨ (ୗభ)

ஊ஠౏౟ౚ౫౨  (ୗ౟)
Pୱభ

(x) + 
஠౏మౚ౫౨ (ୗమ)

ஊ஠౏౟ౚ౫౨ (ୗ౟)
Pୱమ

(x) 

+…… 

 + 
஠౏౉ౚ౫౨ (ୗ౉)

ஊ஠౏౟ౚ౫౨ (ୗ౟)
Pୱ౉(x)  +…        (6.2) 

 In the example of Fig.1, the state transitions 
are governed by the state transition probability aij for 
any i, j, 1≤ i, j ≤ 4.  Inside each state, the state duration 
pdf  Pୢ ୳୰,ୱ౟

(. ) governs the state duration.  The 
conditional envelope pdf Pୱ౟

(.) and the asf Rୱభ (.) 
govern the outputs of that state. 

 
 
Fig.1   A-4 state example of MHSMM 

D. Parameter Estimation of MHSMM 

 While applying the above model in practical 
situations, we need the estimates of the parameters of 
the MHSMM from a given of channel realizations.  
The proposed scheme includes two steps: the sequence 
segmentation step and the state parameter 
estimationstep.  In the sequence segmentation step, we 
separate the observed channel sequence into segments 
corresponding to individual states of the MHSMM.  
Since these segments which are represented by the 
state process of the MHSMM must be approximately 
stationary within the individual states, the statistics are 
approximately equal within individual segments.  On 
the other hand if the statistics are different between the 
segments represented by different states, then the 
sequence segment step has to be designed to detect 
segment boundaries by exploiting the changes of the 
statistics, e.g., the mean and the acf of the sequences.  
After obtaining the segments, we characterize each 
segment by its mean value and entropy value of the 
spectrum.  We perform clustering algorithms to 
classify feature representations of the segments into 
clusters.  Each segment of those clusters individually 
corresponds to a state of the MHSMM.  In the state 
parameter estimation step, we use these segments, 
obtained from the sequence segmentation step, to 
estimate the state parameters of the states of the 
MHSMM. 

E. Sequence Segmentation Steps 

 Here, we separate the observed channel 
sequence into segments corresponding to individual 
states of the  MHSMM,  by detecting the change of 
mean and acf values.  The segments are then clustered 
to form states of the MHSMM.   The cluster algorithm 
is based on similarities in the pairs of the mean and the 
acf values of the segments.  By denoting the observed 
realizations of {X1, X2, …,Xn} as {x1, x2, …, xn}, the 
sequence segmentation step can be described as given 
below: 
 

i. Compute the means of the observed channel 
gains based on a sliding window.  This 
operation generates local means, {୲భ

, ୲మ
, … 

, , ୲౤
}, corresponding to the time instants {t1, 

t2, …, tn}. 
ii. Compute the spectrogram of the observed 

channel gains.  This step generates the local 
spectra {X୲భ(f), X୲మ(f), …,X୲౤(f)}, 
corresponding to the time instants {t1, t2,…, 
tn}.  We use these local spectra to detect 
changes in the acts.  Thus, the entropies of the 
local spectra serve as good indicators for 
changes in the acf’s. 

iii. Segment the local means {୲భ
, ୲మ

, … , , ୲౤
} 

by using the sliding window segmentation 
approach [14]. We have to determine the 
timedetermined by segmenting {୲భ

, ୲మ
, … , , 

୲౤
}, which are denoted as {T,ଵ, T,ଶ,…, 

T,୩}. 

iv. Compute the sequence of the local entropies 
by computing the entropies of the absolute 
value of the local spectra, i.e,; the entropies of 
the energy distributions of:{|X୲భ(f)|, 
|X୲మ(f)|,|X୲య(f)|, …. |X୲౤(f)|}. The sequence of 
the entropies are denoted by {e୲భ

, e୲మ
, …, 

e୲౤}. 
v. Segment the {e୲భ, e୲మ , …, e୲౤} by the sliding 

window segmentation approach [14].  The 
purpose of this  operation is to  determine  the 
time  instants at which the {e୲భ

, e୲మ
, …, e୲౤

} 
show changes. Each  segment  represents  a 
process with its  own approximately  time-
invariant entropy.   That is, the segment 
boundaries {e୲భ, e୲మ, …, e୲౤} separate {x1, x2, 
..., xn} into segments with approximately 
stationary entropies within the individual 
segments.  The time instants of the segment 
boundaries, determined by segmenting {e୲భ, 
e୲మ, …, e୲౤}, are denoted as {Te,1, Te,2, …, 
Tୣ,୩౛}. 

vi. Obtain the candidates of the overall segment 
boundaries by sorting the union of the {T,1, 
T,2, …, T,୩} and {Te,1, Te,2, …, Tୣ ,୩౛

}.  In 

otherwords the obtained candidates of the 
segment boundaries {T1, T2, …, T,୩} and 
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{Te,1, Te,2, …, Tୣ ,୩౛}.  }.  In otherwords the 
obtained candidates of the segment boundaries 
{T1, T2, …, T(୩ା୩౛)} are equivalent to the 

instants where the {୲భ
, ୲మ

, … , , ୲౤
} show 

changes.  Each segment represents a process 
with its own approximately time – invariant 
mean.  In otherwords, the segment boundaries 
of {୲భ

, ୲మ
, … , , ୲౤

}, separate {x1, x2,…, 

xn} into segments with approximately 
stationary nears within individual segments. 
The time instants of the segment boundaries,  

vii. sorted {T,1, T,2, …, T,୩}∪{Te,1, Te,2, …, 

Tୣ,୩౛}.  We obtain and denote the segments as 
{xത1, xത2, …, , xത(୩ା୩౛ାଵ)}, where 

xത1 = {x1, x2, ..., X୘భ}, 
xത2 = {X୘భశభ

,X୘మశమ
, ..., X୘మ

}, …  and 
xത(୩ା୩౛ାଵ)}, = {x୘(ౡశౡ౛)

+1 ,x୘(ౡశౡ౛)
,+2,…,  xn} 

 
viii. Compute the means and average entropies 

of the segments, 
{xത1, xത2, ..., xത(୏ା୏౛ାଵ)}. We denote the pairs of the 

means and the average entropies, 
corresponding  

to{xത1, xത2, ..., xത(୏ା୏౛ାଵ)} by {୶തభ
, e୶തభ}, {୶തమ

, 

e୶തమ}…{୶ത(ేశే౛శభ)
, e୶ത(ేశే౛శభ)

}. 

ix.  By treating the mean and entropy pairs, 
{୶തభ

, e୶തభ
}, {୶തమ

, e୶തమ
}… {୶ത(ేశే౛శభ)

, 

e୶ത(ేశే౛శభ)
} as points in the R2, we use the {୶തభ

, e୶തభ},  

 {୶തమ
, e୶തమ

}…୶ത(ేశే౛శభ)
, e୶ത(ేశే౛శభ)

}, as 

feature  
 representations of {xത1, xത2, ..., xത(୏ା୏౛ାଵ)}in 

the R2 plane. 
Now we use the K-mean of clustering in [12] on the 
mean and entropy pairs.  The number of clusters can be 
determined by using the elbow criterion [2] [5], the 
Davies – Boulding Index [18], or the Dunn Index [9] 
based on the cluster centers from the K-means 
clustering.  The estimated number of clusters the 
estimated  number  of  states  for the  MHSMM,  which  

we   denote  by    M.  By  denoting  the  clusters  is the   
MHSMM  states  individually,   the  states, {Si |1 ≤ i ≤ 
M෡ }, are created. After K-means clustering, we assign 
the clusters to their corresponding states in our 
intended MHSMM, and then assign all the segments to 
their corresponding states in the MHSMM.  In this 
step, each segment is assigned its own corresponding 
state in the MHSMM. We denote the estimated states 
of all the segments as {qത1, qത2, ..., qത (୏ା୏౛ାଵ)} which 

represent the estimated MHSMM states of {xത1, xത2, ..., 
xത(୏ା୏౛ାଵ)} correspondingly. 

x. For those segments which are consecutive in 
the same cluster, we consider them as derived 
from the our-segmentations of the 
segmentation algorithm.  These consecutive 
and same-state segments are in fact in the 
same segment.  Hence we combine the 
consecutive and same-state segments into a 
single segment.  By combing those segments, 
we form the final estimated segments   {xധ1, xധ2, 
...,xധk} and the estimated state sequence {qധ1, qധ2, 
..., qധk}, representing the estimated states of the 
segments {xധ1, xധ2, ..., xധk}  Correspondingly.  
The durations of the segments are  {xധ1, xധ2, ..., 
xധk}  and are denoted by {Dന1, Dന2, ..., Dനk}.  
Those estimated segment information, ie. {xധ1, 
xധ2, ...,xധk}, {qധ1, qധ2, ..., qധk}, and {Dന1, Dന2, ..., Dനk}, 
will be used to perform the state parameter 
estimation step as given below in 6.4.2.  All 
the segmentation steps are clearly shown in 
the block diagram in Fig. 2(a). 

F. Steps involved in the state parameter estimation 

 In this step, we use the estimated segment 
information, i.e. {xധ1, xധ2,  ...,xധk}, {qധ1, qധ2, ..., qധk}, and 
{Dന1, Dന2, ..., Dനk}, to estimate the state parameters. Fig 
2(b) gives the details of the block diagrams. 
Step 1 
The  elements of the state transition matrix  A෡can  be 
estimated  by  aොij = N(SiSj) |N(Si), for 1≤ i, j ≤M෡ , 
where N (SiSj) 

denotes the number of state transitions, from Si to Sj in 
the estimated state sequence {qധ1, qധ2, ..., qധk}.  This 
estimation approach for the tpm A is based on the 
maximum likelihood estimation method [3]. 
Step 2 
 The 1 x M steady state probability πෝcan be 
computed by solving the equation πෝ = πෝA෡. 
Step 3 
 The estimated state duration pdfs. 
 {P෡ୢ ୳୰,ୱభ

(t), P෡ୢ ୳୰,ୱమ
(t),…, P෡ୢ ୳୰,ୱ౉

(t)}, can be 

computed from {Dന1, Dന2,…, Dനk} and {qധ1, qധ2, ..., qധk}.  
For example, those {Dനj  |qധ j = Si}, where 1≤ j ≤ k, are 
treated as realizations of Pୢ ୳୰,ୱ౟

(t), Thus, the Pdur, Si(t), 
can be estimated by performing pdf estimation 
technique on those {Dനj |qധ j = Si}.  The pdf estimation can 
be performed by using the parametric approaches [1] 
[7] or non-parametric approaches [18] [13], depending 

on whether there are prior knowledge about the family 
of pdfs. 
Step 4 
 The estimated duration mean, ෝdar(Si), of the 
state Si can be computed by the mean of the estimated 
duration p.d.f in each state, ie, 

 ෝdar(Si) = ∫ t. P෡ୢ ୳୰  Si(t) dt, for 1 ≤ i ≤ M෡ . 
Step 5 
 The estimated acf, R෡ୱ౟

(t), of the state Si can be 
estimated by computing the time-averaged acfs of the 
{xധj | qധ j = Si,  1 ≤ j ≤ k} 
Step 6 
     The estimated marginal envelope pdf, P෡ୱ౟

(x), in the 
state Si can be computed by treating  {xധj | qധ j = Si,   1≤ j 
≤ k}as realizations of P෡ୱ౟

(x).  The p,d.f estimation 
method includes the parametric [1] [7] on the non-
parametric approaches [18] [13]. 
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Step 7 
 The steady-state percentage of time in the 
state Si can be computed by using (6.1). The estimated 
overall envelope marginal pdf can be computed by 
using (6.2). 

G. Implementation of the AFSMCM and the HMM for 
comparisons  

 (AFSMCM-amplitude-based Finate – state 
Markov Chain Model) 
 In order to evaluate the performance of the 
proposal MHSMM, we compare its performance to 
those based on alternative approaches of the AFSMCM 
and the HMM.  The methodologies of estimating the 
parameters of the AFSMCM and the HMM are briefly 
described here: 
 The AFSMCM is implemented to have 80 
states.  In other words, the range of the envelope is 
divided into 80 intervals.  For an AFSMCM with state 
transition probability aij, its ML estimate is given by aො ij 
= N(Si → Sj) | N(Si) [3], where N(Si) is the number of 
Si and N(Si → Sj) is the number of transitions from Si 
to Sj in the observed training sequence. 
 For the HMM, the range of the envelope is 
also divided into 80 intervals.  The centers of the 80 
intervals are the outputs of the states in the HMM.  The 
HMM is implemented to have 4 states. Each state has 
its own probability mass function (pmf) with the 
domain spanning over the centers of the 80 envelope 
intervals.  The iterative Baum-welch method with 
forward-backward variables[16] is implemented to 
estimate the parameters in the HMM.  This approach is 
optimal in the likelihood sense, although only the local 
MLE is guaranteed due to the many local maxima in 
the parameter space [16].  In this study 
the parameters of the AFSMCM and the HMM are all 
estimated using the above mentioned approaches. 

H. Simulation 

 Details given in section 6.2 equations (30) and 
(31).  The ML estimator for  in (30) is given  by෡  = 
∑୬

୧ୀଵ xi/n.  For KR in (30),  the  moment  method  

gives KR = ඥ1 − γ /(1-ඥ1 − γ) and  
γ = var [x2] / ((E [x2])ଶ). To estimate 

Pୢ ୳୰ Si(t), the parametric approach is used with the log 
normal distribution. For each state, the parameters of 
the state duration pdf are estimated individually. The 
parameters of (31) are estimated by 

ln= ln(E[x] – ( 
ଵ

ଶ
 ) ln (1+ (var[x] / (E[x]2))) 

 and2 = ln (1+ (var[x] / (E[x]2))).  Those E[x], 
var [x], and var [x2] are computed by their time-
average counter parts. 
 In fig.2, the elbow criterion, the Davis-
Bouldin Index, and the Dunn Index consistently 
indicate 4 as the suggested number of cluster centers. 
Thus, the 4-state MHSMM was used to model this 
fading sequence.  By performing the proposed 
parameter estimation scheme, the results are shown in 
fig.2a and fig.2b.  In fig.2a, the theoretical p.d.f is 
computed by the parameters specified in simulation.  

The estimated MHSMM p.d.f and the AFSMCM p.d.f 
are close to the theoretical p.d.f.   

 
Fig.2  The elbow criterion, the minimum of the Davis-

Bouldinindex,and the maximum of the Dunn index 
indicate 4 as the number of clusters 

 
Fig.2.a  The theoretical pdf, the estimated HSMM pdf, the 

estimated AFSMCM pdf, and the estimated HMM pdf. 
 
The HMM pdf can be seen to obviousy deviate from 
the theoretical pdf.  We also  compare the estimated  
cdfs  with  the  theoretical  cdf  by  the  KS-test.  The 
D-statistics, from the KS-test, of the MHSMM cdf, the 
AFSMCM cdf, and HMM cdf are 0.0218, 0.0638 and 
0.1692, which shows that the MHSMM has the best-
fitted pdf among the 3 models. 
 The estimated acf of the 4 states in the 
MHSMM are shown in fig.3 below.  For comparisons, 
the theoretical Clarke acf are also shown in fig.3.  The 
acts of the MHSMM are shown closely characterize the 
theoretical acfs in different situations.   

 
Fig.2.b 
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Fig.3 

 

I. Experiments 

 Experiments we conducted in two types of 
areas 

i. One is a Hill area and the measurements are 
from a two storied building. 

ii. A village area with natural scenario with trees 
of all type.  Here also data were collected from 
the top of a two storied building. 

 In both the experiments, the carrier frequency 
was set as 2.4 GHZ. The signal envelope was collected 
at 200 samples per second.  The measurements of 4000 
seconds were collected, individually from each 
experiment.  The data for 4000 seconds, from each 
scenario, were separated into the first 2,000 seconds, 
denoted as the data set 1, and the second 2000 seconds 
denoted as the data set 2.  Our objective here is to use 
the data set 1 to estimate the model parameters, and 
then use the data set 2 to test the accuracies. 
 Experiment 1  area is semi-open due to hills 
on one side, with reflectors and scatters surrounding 
the transmitter and receiver.  The dynamics of the 
fading channel were caused by a pre-arranged 
personnel walking through the LOS path of the 
channel.  The candidate walked back and forth 
periodically at a regular walking speed.  The 
experiment was conducted at the time when the place 
(site) was quiescent without other non-cooporating 
dynamic fading disturbances, with the pre-arranged 
person being the only dynamic channel disturbance. 
 The number of clusters is suggested to be two 
by the elbow criterion, Davis-Boudin Index, and the 
Dunn Index.  Thus, the two-state MHSMM is 
employed to further estimate the state parameters.  The 
data pdfs in Fig.4 are constructed by the Kernal 
Density Estimation (KDE) method [21] [22].  The 
estimated MHSMM pdf is very close to the data pdfs 
for both the data sets 1 and 2, as shown in Fig.4.  
Comparing the empirical cdf of the data set 1 with the 
estimated cdfs of the models, the D-statistics from the 
KS-test are 0.2166 (MHSMM), 0.0772 (AFSMCM), 
and 0.3114(HMM), which show that the AFSMCM has 

the best-fitted pdf.  Comparing empirical cdf of the 
data set 2 with the model cdfs estimated by the data set 
1, the D-statistics of the KS-test are 0.1636 
(MHSMM), 0.1395 (AFSMCM), and 0.2443 (HMM), 
which show that the AFSMCM also has the best-fitted 
pdf.  The estimated acfs of the MHSMM and the acfs 
of the corresponding theoretical Clarke model are 
shown in fig.6, where the MHSMM acfs closely 
characterize the theoretical acfs.  Although, in this 
case, the AFSMCM is slightly better in fitting the pdfs, 
it is found that the capability of fitting the pdf is only 
one of the performance metrics for fading models.  For 
characterizing the acfs, the MHSMM shows more 
flexibility.  Thus, while selecting models, the model 
accuracies and also the flexibilities need to be 
considered based on specific applications. 
 

 
Fig.4 

 
 Experiment, as said, was conducted in the 
village on the top of a building.  The transmitter and 
the receiver were in the NLOS positions.  The 
experiment was conducted in the morning when the 
area is busy.  The dynamics of the fading channel were 
caused by many non-cooperating persons, walking 
through or waiting.  We did not intend to put any 
controlled dynamic fading disturbances.  This step was 
intended to capture the fading channel characteristics 
under normal busy hall way conditions. 
 The number of clusters is suggested to be four 
by the already mentioned criteria.  Thus, the four state 
MHSMM is employed to further estimate the state 
parameters.  The estimated pdf of the MHSMM is 
close to the data pdfs, constructed by the KDE method, 
from both the sets 1 and 2, as shown in Fig.5 
comparing the empirical cdf of the data set  1  with the  
estimated model cdfs, the D-statistics of the KS test are 
0.0275 (MHSMM), 0.0434(AFSMCM), and (0.1644) 
(HMM), which implies that MHSMM is the best-fitted.  
Comparing the empirical cdf of the data set 2 with the 
model cdfs estimated by the data set 1, the D-statistics 
of the KS-test are 0.0698 (MHSMM), 0.0735 
(AFSMCM), and 0.1522 (HMM), which again shows 
the superiority of MHSMM as the best-fitted.  The 
estimated acfs of the MHSMM and the acfs of the 
corresponding theoretical Clarke model shown in 
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Fig.7, where the MHSMM acfs closely characterize the 
theoretical acfs.  Summarizing the results from both 
experiments in station I and II, we can conclude the 
superiority of the MHSMM as comparable to that of 
the AFSMCM in characterizing the acfs. 

 
Fig. 5 

 

 
Fig.6 

 

 
Fig.7 

J. Inferences 

 In the HMM and the Hidden Semi-Markov 
Model (HSMM), there exist iterative algorithms which 
adjust the model parameters to increase the likelihood 
[16], based on the iterative Bawn-Welch algorithm 
with the forward-backward variables. However the 
iterativealgorithms remain to be improved in the 
following aspects.  First, we need to know the number 
of states, outputs of the states etc., in order to apply the 
iterative algorithm.  In the real applications, we lack 
the required information about the number of states and 
outputs of the states, which can only by chosen 
heuristically.  Apart from this, the iterative algorithms 
often achieve local maxima.  The MLE is difficult to 
achieve in practice.  Secondly, the formulation of the 
iterative algorithm is mathematically tractable under 
the assumption on the process ie the outputs at different 
time instants are un-correlated. In the colored non-
gaussian process, the iterative algorithms are difficult 
to formulate explicitly.  In contrast to these limitations, 
the MHSMM is designed to the freedom in 
characterizing the acfs. 

 While estimating the pdfs of Pୢ ୳୰,ୱ౟
(t),, and Pୱ౟

 
(x), we can use parametric or non-parametric 
approaches. If priori` knowledge about our interested 
scenario is available, we may consider using the prior-
known family of pdfs, the pdf estimation problem is 
reduced to estimate the parameters of the family of pds.  
If there is no priori information available the non-
parametric approaches must be employed, e.g. the 
kernel density estimation approach [13], [18].  In our 
proposed MHSMM parameter estimation scheme, the 
length of the window is an important factor which 
influences the results.  We here use to following 
situations in determining the length of the window: (i) 
The accuracy requirements of the state transition times, 
related to the applications, are considered.  For 
example, the power control interval of the GSM system 
is specified to be 480 ms[8].  When the fading model is 
employed to facilitate the power control, the un-
certainties of the estimated state transition times is 
required to be not much larger than the power control 
interval. The windows much larger than the power 
control interval cause large uncertainties in the 
estimated state transition times and lead to adverse 
effects in the power control.  (ii)  The length of the 
window must be much smaller than the average state 
durations, such that the temporal uncertainty caused by 
the window length is negligible.  For the examples in 
the 4 states, the LOS, the NLOS, the high speed, and 
the low speed conditions are expected to persist longer 
than tens of seconds.  Thus, the length of the window 
most be much smaller than these durations   (iii) The 
parameter estimation scheme uses the entropy of the 
energy distribution in the frequency domain. To 
accurately calculate the entropy, the principle of 
uncertainty and the U-shaped power spectral density of 
clark model must be considered.  Based on the 
principle of uncertainty, the ΔfΔt ≥ ¼ π, where Δf is 
the bandwidth of the signal and Δt is the window 
length of the signal.  In the clark model, the U-shape 
power spectral density of the channel process is non-
negligible from-fD to fD.  Hence we obtain Δf = 2fD and 
then Δt ≥ 1/(4 π Δf) = 1/(8 πfD). 
 For accurately estimating the MHSMM 
parameters, we need to obtain sufficient data.  In 
mobile scenerios, the state statistics, which are 
dominated by the physical processes, e.g. the LOS, the 
NLOS, the high speed, and the low speed scenarios, 
often persist at sufficient temporal durations for data 
collections to characterize these physical conditions. 
 
The experimental results show the feasibility of 
collecting sufficient data for the parameter estimation. 

VII. CONCLUSION 

 In this study, the use of MHSMM for 
characterizing the flat fading envelope process.  The 
study also provide associated parameter estimation 
algorithms in this model.  The use of the MHSMM is 
to match various physical fading conditions into the 
process of the states of the MHSMM.  Thus, the 
MHSMM is capable of modeling the piece-wise 
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stationary properties of the envelope process, including 
the envelope pdfs and the acfs.  In the parameter 
estimation scheme, the observed envelope sequence is 
segmented and the segments are used to estimate the 
model parameters.  The parameters of the state 
envelope pdfs, the acfs, and the state duration pdfs can 
be estimated by using either non-parametric 
approaches or parametric approaches, depending on the 
availability of the prior knowledge.  We demonstrated 
an example on the GSM system parameters under 
different physical fading conditions including mobility 
speeds and shadowing.  These results showed 
acceptable accuracies for the MHSMM and the 
associated parameter estimation scheme.  The 
parameters of the AFSMCM and the HMM were also 
estimated based on the simulation data.  Comparison of 
the estimated results of the three methods, it shows that 
MHSSM is able to provide the most feasible and 
accurate results in modeling this simulation scenario.  
Apart from simulations, the experimental data from the 
two sites were collected and separated into two non-
overlapping sets.  One set of the data was used to 
estimate the model parameters, while the other set is 
used to compare and verify their accuracies.  These 
experimental data also verified the accuracies and 
theflexibilities of the MHSMM and the associated 
parameter estimation scheme. 
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