On Triangular Sum Graphs of some Graphs

Dr. J.Devaraj^{#1}, S.P.Reshma^{#2}, C.Sunitha^{#3}

¹Associate professor(Rtd), Department of Mathematics, N.M.C.College, Marthandam, Tamil Nadu, India

devaraj jacob@yahoo.co.in

² Assistant Professor, Department of Mathematics, Emerald Heights College for women, Ooty, Tamil Nadu, India spreshma30@gmail.com

³Research Scholar, Department of Mathematics, N.M.C.College, Marthandam, Tamil Nadu, India sunithadavidjones@gmail.com

Abstract: A triangular sum labelling of a graph G is a one – to – one function f: $V \rightarrow N$ (where N is the set of all non – negative integers) that induces a bijection on f^{\dagger} : E (G) \rightarrow {T₁, T₂, ...,T_q} of the edges of G defined by $f^+(uv) = f(u) + f(v)$, $\forall uv \in E(G)$. In this paper we proved the following graphs star graphs $S^+(n,m)$, Generalized Butane graph, $n -$ Centipede union P_n , Fork graph are triangular sum graphs.

Keywords: Star graph, Path graph Generalized Butane graph.

Introduction:

In 2008 S.Hedge and P.Shankaran [1] call a labelling of graph with q edges a triangular sum labelling if the vertices can be assigned distinct non – negative integers in such a way that, when an edge whose vertices are labelled i and j is labelled with the value $i + j$, the edge labels are $\{k(k+1)/2\}$ where $k = 1, 2, \dots, q$. In this paper we can see some star linked graphs and named graphs are triangular sum graph.

Definition: 1.1

A triangular number is a number obtained by adding all positive integers less than or equal to a given positive integer n. If nth triangular number is denoted by T_n then T_n = $\frac{1}{2}$ $\frac{1}{2}n(n+1)$. It is easy to observe that there does not exist consecutive integers which are triangular numbers.

Definition:1.2

A triangular sum labelling of a graph G is a one – to – one function f: $V \rightarrow N$ (where N is the set of all non – negative integers) that induces a bijection on $f' : E(G) \rightarrow {T_1, T_2, ..., T_q}$ of the edges of G defined by $f'(uv) = f(u) + f(v)$, $\forall uv \in E(G)$.

Some Known Results:

S.Hedge and Shankaran proved the following results:

- 1. Path P_n , Star $K_{1,n}$, are triangular sum graphs.
- 2. Any tree obtained from the star $K_{1,n}$ by replacing each edge by path is a triangular sum graph.
- 3. The lobster T obtained by joining the centers of k copies of a star to a new vertex w is a triangular sum graph.
- 4. The Complete $n array graph T_m$ of level m is a triangular sum graph.
- 5. The Complete graph K_n is triangular sum graph iff $n \leq$.
- 6. If G is an Eulerian (p,q) graph admitting a triangular sum labelling then q \neq 1(mod 12).
- 7. The Dutch windmill DW(n) (n copies of $K₃$ sharing a common vertex) is not a triangular sum graph.
- 8. The Complete graph K_4 can be embedded as an induced subgraph of a triangular sum graph.

Theorem:1.1

Let S_n be a star with $n + 1$ vertices. Let G be the disjoint union of m copies of S_n . Then G is triangular sum graph.

Proof

Let $\{a_0, a_1, a_2, \ldots, a_n\}$ be the vertices of the star S_n . Consider m isomorphic copies of S_n . Let G is the disjoint union of m copies of S_n .

Let $V(G) = \{a_{ii} / 1 \le i \le n + 1 ; 1 \le j \le m\}.$ Note that the graph G has mn edges and $m(n +$ 1) vertices.

Define $f: V(G) \rightarrow \{0, 1, 2, \ldots, T_{mn}\}\$ as follows.

Now label the vertex $f(a_{11})$ as 0 and $f(a_{1j})$, j $= 2,3,...,n +1$ as $T_1, T_2,...,T_n$ respectively so as the edges $f(a_{11}a_{1j}), j = 2,3,...,n + 1$ must obtain the values as T_1, T_2, \ldots, T_n .

In the second copy, let a_{22} , a_{23} , ..., $a_{2(n + 1)}$ be the vertices adjacent to a_{21} . Label these vertices as $f(a_{21}) = 1$ and others as $T_{n+i} - 1$, $1 \le i \le n$. So as the edges $f(a_{21}a_{2j}), 2 \leq j \leq n + 1$ obtain the values by $f(a_{2i}) + f(a_{2i}) = T_{n+i}$, $1 \le i \le n$.

Next let a_{32} , a_{33} ,..., $a_{3(n + 1)}$ be the vertices adjacent to a_{31} in the third copy. Label the vertices as $T_{2n + i} - 2$, $1 \le i \le n$ and $f(a_{31}) = 2$ from this we obtain the edge labels as $f(a_i)$ + $f(a_{31}) = T_{2n+i}$, $1 \le i \le n$.

Proceeding likethis we get in the mth copy of the graph G has the vertex set a_{m1} , a_{m2} ,..., $a_{m(n)}$ $_{+ 1}$). Labels the vertices as $f(a_{m1}) = m - 1$ and corresponding other vertices $T_{(m-1)n^+}$ $i-$ (m -1), $1 \le i \le n$ and the corresponding edge labels are $T_{mn-(n-1)},..., T_{mn-1},T_{mn}$.

Clearly all the vertex labelings are distinct and edge values are in the form $\{T_1, T_2, ..., T_{mn}\}.$ This completes the proof. Hence G is triangular sum graph.

Example:1

Definition:1.3

Let S_n be a star with $(n + 1)$ vertices. Consider m copies of S_n Identify any one vertex of the ith copy other than the central vertex with any one vertex other than the centre vertex of (i $+ 1$ th copy, the graph so obtained is denoted as $S^+(n,m)$.

Theorem:1.2

 $S^{+}(n,m)$ is triangular sum graph for all $n \geq 3$ and m.

Proof:

Let $\{a_{ij} \mid 1 \le i \le n \}$ 1, $1 \le j \le m$ } be the vertex set of m copies of S_n . Then one vertex of the ith copy other than the central vertex with any one vertex other than the centre of $(i + 1)^{th}$ copy.

 Here we join the vertex of m copies to $a_{(i+1)}$ th vertices. The graph has (mn+ 1) vertices and mn edges.

Define f :V(G) \rightarrow {0,1,2,...,T_{mn}} as follows:

$$
f(a_{11}) = 0
$$

\n
$$
f(a_{1j}) = T_i, 1 \le i \le n
$$

\n
$$
f(a_{21}) = T_{n+1} - T_1
$$

\n
$$
f(a_{2j}) = T_{n+i} - f(a_{21}), 2 \le i \le n
$$

\n
$$
f(a_{31}) = T_{2n+1} - f(a_{2n})
$$

\n
$$
f(a_{3j}) = T_{2n+i} - f(a_{3j}), 2 \le i \le n
$$

\n
$$
\vdots
$$

\n
$$
f(a_{m1}) = T_{(m-1)n+1} - f(a_{(m-1)n})
$$

 $f(a_{mj}) = T_{(m-1) n+i}$ - $f(a_{(m-1)n}), 2 \le i \le n$

Clearly the vertex labels are distinct.

Now, from the definition , the edge values are

$$
f(a_{1j}) + f(a_{11}) = T_i, 1 \le i \le n, 2 \le j \le n + 1
$$

$$
f(a_{21}) + f(a_{12}) = T_{n+1}
$$

$$
f(a_{2j}) + f(a_{21}) = T_{n+i}, 2 \le i \le n - 1, 2 \le j \le n + 1
$$

$$
f(a_{31}) + f(a_{21}) = T_{2n+1}
$$

 $f(a_{3i}) + f(a_{31}) = T_{2n+i}, 2 \le i \le n-1, 2 \le j \le n+1$

$$
f(x) = \frac{1}{2}
$$

$$
f(a_{m1})+f(a_{(m-1)1})=T_{(m-1)n+1}
$$

 $f(a_{mj}) + f(a_{m1}) = T_{(m - 1)n + i, 2} \le i \le n - 1,$ $2 \leq j \leq n+1$

Also
$$
f(a_{mn}) + f(a_{m1}) = T_{mn}.
$$

Hence the edge values are in the form $\{T_1,$ $T_2,...,T_{mn}$. Thus $S^+(n, m)$ is a triangular sum graph.

Theorem: 1.3

Fork graph is triangular sum graph.

Proof

 Let G be a graph with 5 vertices and 4 edges. Let the vertex set be $V(G) = \{u_i / 1 \le i \le 5\}.$

Let the edge set be $E(G) = \{u_i u_{i+1} / 1 \le i \le$ $2\} \cup \{u_1u_4\} \cup \{u_4u_5\}.$

Define f: $V(G) \rightarrow \{0,1, 2,...,T_4\}$ such that

$$
f(u1) = 0
$$

$$
f(u2) = 3
$$

$$
f(u3) = 6
$$

$$
f(u4) = 1
$$

$$
f(u5) = 9
$$

 Clearly the vertex labels are distinct. Hence f is injective and the edge labels are of the form ${T_1, T_2,...,T_4}$ is given by

$$
f^{*}(e_{1}) = 3 = T_{2}
$$

$$
f^{*}(e_{2}) = 6 = T_{3}
$$

$$
f^{*}(e_{3}) = 1 = T_{1}
$$

$$
f^{*}(e_{4}) = 10 = T_{4}
$$

 clearly all the vertex labels are distinct and the edge labels are of the form

 ${T_1, T_2,...,T_4}$. Hence fork graph is triangular sum graph.

Example: 3

Fig:3 Fork graph is triangular sum graph.

Definition:1.4

Generalized Butane graph

Generalized Butane graph is defined as follows. Let G be a graph with $V(G) = \{u_i / 1 \le i \le n\}$ n} $\cup \{w_i/ 0 \le i \le n+1\}$ and $E(G) = \{u_iw_i/ 0 \le i \le n\}.$ Then the graph G has $3n + 1$ edges.

Theorem:1.4

 Generalized Butane graph is triangular sum graph.

Proof

Let G be the graph with $V(G) = \{u_i / 1 \le i \le n\}$ n} $\cup \{w_i/ 0 \le i \le n + 1\}$ and $E(G) = \{u_iw_i/ 1 \le i \le n\}$ n} $\cup \{w_i v_i / 1 \le i \le n\}$ $\cup \{w_i w_{i+1} / 0 \le i \le n\}$. Then the graph G has $3n + 2$ vertices and $3n + 1$ edges.

Define f: $V(G) \to \{0, 1, 2, ..., 3n + 1\}$ as follows.

Now label the vertex $f(w_1)$ as 0 and

$$
f(w_2) = T_1
$$

f(w₃) = |T₁ - T₂| and
f(w_i) = |T_{i-2}- T_{i-1}|, 4 \le i \le n + 1.

So as the edges $w_1w_2, w_2w_3,...,w_nw_{n+1}$ must obtain the values as T_1, T_2, \ldots, T_n .

Next let u_1, u_2, \ldots, u_n be the vertices adjacent to w_1, w_2, \ldots, w_n in left. Label the vertices $f(u_i)$ as $|T_{n+i}|$ $-$ f(w_i)|, $1 \le i \le n$ and so as the edges $u_1w_1, u_2w_2,...,u_nw_n$ must obtain the values as T_{n+i} , $1 \leq$ $i \leq n$.

Also let v_1, v_2, \ldots, v_n be the vertices adjacent to w_1, w_2, \ldots, w_n in right. Label the vertices $f(v_1)$ as T_{3n} and $v_2,...,v_n$ as $|T_{3n-i} - f(w_{i+1})|, 1 \le i \le n-1$. And the corresponding edges $v_1w_1, v_2w_2, \ldots, v_nw_n$ must obtain the values as T_{3n-i} for $0 \le i \le n-1$.

Also the vertex $f(w_0)$ has $3n + 1$ and the corresponding edge $f(w_0w_1) = 3n + 1$.

Clearly, all the vertex labelings are distict and edge values are in the form $\{T_1, T_2, \dots, T_{3n} \}$. This completes the proof.

Hence Generalized Butane graph is triangular sum graph.

Example: 4

graph.

Theorem:1.5

 n – Centipede union P_n is triangular sum graph.

Proof

The $n -$ Centipede is the tree on $2n$ nodes obtained by joining the bottoms of n copies of the path graph P_2 laid in a row with edges. It has $2n$ vertices and $2n - 1$ edges.

The path graph P_n is of n vertices and $n-1$ edges.

Let G₁ be the n – centipede u_i and v_i, $1 \le i \le$ n and G_2 be the path P_n of $w_1, w_2, ..., w_n$. Then $V(G)$ = $V(G_1) \cup V(G_2)$ and $E(G) = E(G_1) \cup E(G_2)$. Now the graph G has $3n$ vertices and $3n - 2$ edges.

Define f: $V(G) \rightarrow \{0,1,2,3,...,T_{3n-2}\}$ as follows. Now label the vertices as follows

 $f(u_1) = 1$

 $f(u_i) = |T_i - f(u_{i-1})|, 2 \le i \le n$

From this we get the edges $u_1u_2, u_2u_3, \ldots, u_{n-1}$ $_1$ u_n must obtain the values T₂, T₃, ..., T_n.

Also the vertex labels of v_i are

 $f(v_1) = 0$

$$
f(v_i) = |f(u_i) - T_{2i} - i|, 2 \leq i \leq n
$$

so as from above results u_1v_1 must obtain the value T_1 and the remaining edges $u_2v_2, u_3v_3,...,u_nv_n$ must obtain $T_{2n-2}, T_{2n-3},...,T_{n+1}$.

Also the vertex label of w_i , $1 \le i \le n$ by

 $f(w_1) = 3$

 $f(w_i) = |f(w_{i-1}) - T_{2n+i}|, 2 \le i \le n, 0$ $\leq j \leq n-2$ and so the edges w_iw_{i+1} , $1 \leq i \leq n-1$ must obtain the values T_{2n} , T_{2n+1} , ..., T_{3n-2} .

Clearly all the vertex labels are distinct and the edge values are in the form $\{T_1, T_2, ..., T_{3n-2}\}$. This completes the proof. Hence G is triangular sum graph.

Example: 5

Fig: $5 - 4$ – Centipede union P_4 is triangular sum graph.

Definition:1.5

A Y- tree Y_{n+1} is a graph obtained from the path P_n by appending an edge to a vertex of the path P_m adjacent to an end point.

Theorem:1.6

For $r \ge 3$, the Y – tree Y_{n + 1} is a triangular sum graph.

Proof

Let $V(G) = {u_1, u_2, ..., u_n} \cup {v}$ and $E(G) =$ ${u_iu_{i+1}/ 1 \le i \le n - 1} \cup {u_{n-1}v}.$

Note that the graph Y – tree has $n + 1$ vertices and n edges.

Define f: V(G)
$$
\rightarrow
$$
 {0,1,2,...,T_n} as follows
\n $f(u_1) = 1$
\n $f(u_2) = 0$
\n $f(u_3) = 6$
\n $f(u_i) = |f(u_{i-1}) - T_i|, 4 \le i \le n$
\n $f(v) = 3$

clearly all the vertex labels are distinct and the edge values are

$$
f(u_1u_2) = 1
$$

f(u_2u_3) = 6

$$
f(u_iu_{i+1}) = T_{i+1}, 3 \le i \le n
$$

f(u_2v) = 3

Therefore the edge values are in the form ${T_1, T_2,...,T_n}$. Hence the proof.

Fig: 6 Y_{4+1} , Y_{5+1} are triangular sum graph.

REFERENCES

- [1] S.M.Hedge and P.Shankaran, On Triangular Sum Labeling of Graphs in : B.D.Acharya, S.Arumugam , A. Rosa Ed., Labeling of Discrete Structures and Apllications, Narosa Publishing House, New Delhi (2008) 109 – 115.
- [2] M.A. Seoud and M.A. Salim, Further Results on Triangular sum graphs, International Mathematical Forum, Vol.7, 2012, no.48, 2393 – 2405.
- [3] S.K.Vaidya, U.M.Prajapati, P.L. Vihol, Some Important Results on Triangular Sum Graphs, Applied Mathematical Sciences, Vol.3, 2009, no.36,1763 – 1772.