Strengthening and Widening of Flexible Pavement

Ajay Singh Paikra *, Adhir Sarkar **

* Kalinga University, Raipur,

** MMCT, Raipur

Abstract

Pavement design is a difficult work. Traffic loading is heterogeneous, mix of vehicle, traffic load, axle type, load distribution and over the pavement design life. Pavement material responds to stress influencing, temperature, moisture, loading rate and other factors. A traffic survey is needed for existing roads that are need for up-gradation to pavement strengthening. Traffic surveys conducted in the region from the basis for deciding the number of traffic lanes and Road way width pavement design. Traffic survey is to establish the Average Annual Daily Traffic (AADT).Expected outcome of the proposed work are evaluation of sufficient overlay over the existing surface. Widen the road as per traffic requirement. Check out their strength after overlay and free flow of vehicles.

Key word Pavements, CBR, bitumen,

Introduction

Roads are damaged rapidly due to the heavy mixed traffic and adverse climatic conditions in dust is formed and during rain mud is formed due to the combined effect of traffic and rain water washing away the soil binder from the surface the stone aggregate comes out on the surface layer. If there is great surface wearing deterioration or giving patch works also application of good binding materials full under the influence of strengthening. The strengthening will be carried but base on geotechnical investigation of sub- grade solid.

Impact

The maintenance operations involves the investigation of road condition, resolves the problem and adopting the most suitable steps. If the pavement is well designed and constructed, they require maintenance. If the pavement has to support increased wheel loads and load repetitions the payment rapidly distressed. Un-evenness is uncomfortable for driver or passenger to travel. Unevenness is extremely uncomfortable for a driver or passenger to travel over its stretch so a pavement with a seriously damaged top surface is strengthen to make it functionally serviceable which is get by providing a another layer over existing pavement so it that way top enhance a its longevity as a rapid increase in larger commercial vehicle like truck buses occupy greater space so it is necessary to widen the road as per the traffic requirement.

Material and Methodology

The main focus of this paper is to provide strength and make pavement sufficient wide. There are so many tests perform to determination of strength and survey and leveling also. Survey and leveling was field work for widening of pavement.

Standard Proctor Compaction Test

- Determination of maximum dry unit weight which can be used for specification of field compaction.
- Relationship between the moisture content and density of soils.
 - a) Maximum Dry Density

Determinati on No.	1	2	3	4
Added water content %	6	8	10	12
Mass of mould + compacted soil (g)	6.539	6.640	6.556	6.489
Mass of mould (g)	4.11	4.11	4.11	4.11
Mass of compacted soil (g)	2.429	2.530	2.446	2.379
Bulk density g/cm ³	2.429	2.530	2.446	2.379
Dry density g/cm ³	2.291	2.343	2.224	2.124

Table No.1 Maximum Dry density

b) Optimum Water Content:

Table No 2 Optimum Water Content

Container No.	1	2	3	4
Mass of container + wet soil (g)	73.8	68.78	64.2 8	72.1 5
Mass of container + dry soil (g)	68.72	63.54	58.5 1	64.9 4
Mass of water (g)	5.08	5.24	5.77	7.21
Mass of container (g)	7.3	7.23	6.84	7.67
Mass of dry soil (g)	61.42	56.31	51.6 7	57.2 7
Water content %	8.27	9.3	11.1 7	12.5 9

California Bearing Ratio Test

Table gives the standard loads for different penetrations for the standard material with a C.B.R. value of 100%.

Table No. 3 Penetration of plunger (mm) Vs Standard load (kg)

Penetration of	Standard
plunger (mm)	load (kg)
2.5	1370
5.0	2055
7.5	2030
10.0	3180
12.5	3600

Result

Observation and calculation

Table No. 4 Penetration Of Plunger (mm) Vs Load

Dial Reading (mm)

Sr.	penetration	load dial	
no.	of plunger	reading(mm)	
	(mm)		
1	0.0	0	
2	0.5	13	
3	1.0	18	
4	1.5	24	
5	2.0	44	
6	2.5	50	
7	3.0	54	
8	4.0	57	
9	5.0	64	
10	7.5	75	
11	10	84	
12	12.5	96	

2

Calculation

CBR value at 2.0 mm penetration-

 $50 \times 6.6 / 1370 = 24.087$

CBR value at 5 mm penetration-

 $64 \times 6.6/2055 = 20.554$

Determination of Liquid limit

Plasticity Index

Table No 5 Sample 1

Container Number	1	2	3	4
Wt.of Container + Wet Soil	56.11 0	52.9 6	43.70	43.39
Wt.of Container + Dry Soil	43.55	42.5 8	35.30	35.89
Loss of Moisture	12.56	10.3 8	8.40	7.50
Wt. of Container	14.0	16.5 1	14.52	13.53
Wt. of Dry Soil	29.55	26.0 8	20.80	22.39
Moisture Content(%)	42.50	39.8 0	40.38	33.50
No.of Blows	18	22	28	32

	Value	Permissible Value
Liquid	36.50%	<70.00%
Limit		

Table No 6 Sample 2

Container Number	1	2	3	4
Wt.of Container + Wet Soil	60.00	58.75	55.15	46.56
Wt.of Container + Dry Soil	40.84	46.37	44.47	39.17
Loss of Moisture	14.20	12.40	10.64	7.39
Wt. of Container	14.0	16.50	14.5	13.5
Wt. of Dry Soil	31.84	29.79	29.97	25.67
Moisture Content (%)	44.60	41.48	35.50	35.79
No.of Blows	18	28	29	38

	Value	Permissible Value
Liquid	37.00%	<70.00%
Limit		

Plastic limit

Tab	le No	7	Sample	e 1
-----	-------	---	--------	-----

Contain			
er	1	2	3
Number			
Wt. of			
Contain	21.23	20.85	19.2
er + Wet	21.23	20.83	19.2
Soil			
Wt .of			
Contain	20.33	19.81	18.51
er + Dry			

Soil			
Loss of			
Moistur	0.90	1.04	1.05
e			
Wt. of			
Contain	16.5	15.5	14.0
er			
Wt. of	3.83	4.31	4.15
Dry Soil	5.05	4.51	4.15
Moistur			
е	(mc1)	(mc2)24	(mc3)
Content	23.50	.15	25.29
(%)			

Wt. of Contain er	15.5	14.5	15.5
Wt. of Dry Soil	4.00	5.57	6.21
Moistur e Content(%)	(mc1)22. 50	(mc2)2 3.34	(mc3)2 4.15

	Value	Permissible
		Value
Plastic Limit	23.33%	<45%

Plasticity index= LL-PL= 13.17%

Conclusion

After that the all test results became positive which are essentially required for the pavement design. These test results was very help full for us to design the pavement.

References

- CHAKRABORTY PARTHA and DAS ANIMESH (2005), "Principles of transportation engineering", New Delhi – 110001.
- IRC: 37-2001, "Guideline for the design of Flexible pavements design" (second revision), page 19-41. New Delhi – 10011.
- IRC: 81-1997 "Guidelines for Strengthening of Flexible Road Pavements Using Benkelman Beam Deflection Techniques" (first revision), New Delhi – 110011.
 - Khanna P.N. (1958) "Indian practical civil engineering handbook" New Delhi engineers publishers, IND 1958.

	Value	Permissible
		Value
Plastic Limit	24.31%	<45%

Plasticity index= LL-PL= 12.69%

Table No 8 Sample 2

Contain er	1	2	3
Number			
Wt. of			
Contain	20.4	21.37	23.21
er + Wet	20.4	21.37	23.21
Soil			
Wt. of			
Contain	19.5	20.07	21.71
er + Dry	19.5		
Soil			
Loss of			
Moistur	.90	1.30	1.50
e			

- Khanna S.K. , Justo C.E.G. , A. Veerarangvan (2014), "Highway engineering", Civil line roorkee – 247667 , 10th edition.
- Pocket book for highway engineers second division.
- Vasvani. N.K (1970), "Highway engineering" Highway research council no.74.