On Vertex Polynomial of Snake Graphs

E. Ebin Raja Merly^{#1}, A. M. Anto^{*2}

¹Assistant Professor in Mathematics, Nesamony Memorial Christian College, Marthandam - 629165, India. ¹ebinmerly@gmail.com

²Research scholar in Mathematics, Nesamony Memorial Christian College, Marthandam - 629165, India.

²antoalexam@gmail.com

Abstract - Let G = (V, E) be a graph. The vertex polynomial of the graph G = (V, E) is defined as $V(G, x) = \sum_{k=0}^{\Delta(G)} v_k x^k$, where $\Delta(G) = \max\{d(v)/v \in V\}$ and v_k is the number of vertices of degree k. In this paper we seek to find the vertex polynomial of snake graphs.

Keywords- Triangular Snake, Quadrilateral snake, Double Triangular Snake, Double Quadrilateral Snake, Vertex Polynomial, Union, Sum.

1. INTRODUCTION

In a graph G = (V, E), we mean a finite undirected, non-trivial graph without loops and multiple edges. The vertex set is denoted by V and the edge set by E. For $v \in V$, d(v) is the number of edges incident with v. The maximum degree of G is defined as $\Delta(G) = \max\{d(v)/v \in V\}$. For terms not defined here, we refer to Frank Harary [2]. The graph G = (V, E) is simply denoted by G. Let G_1 and G_2 be two graphs, the union $G_1 \cup G_2$ is defined to be (V, E) where $V = V_1 \cup V_2$ and $E = E_1 \cup E_2$, the sum $G_1 + G_2$ is defined as $G_1 \cup G_2$ together with all the lines joining points of V_1 to V_2 .

2. VERTEX POLYNOMIAL OF TRIANGULAR SNAKE(T_n), THEIR UNION AND THEIR SUM

Definition: 2.1

A Triangular Snake T_n is obtained from a path $u_1u_2 \dots u_n$ by joining u_i and u_{i+1} to a new vertex v_i for $1 \le i \le n-1$. That is every edge of a path is replaced by a triangle C_3 .

Theorem: 2.2

Let G be a Triangular snake (T_n) . Then the vertex polynomial of G is given by

$$V(G, x) = (n - 2)x^4 + (n + 1)x^2, n \ge 2.$$

Proof:

Let G be a Triangular snake (T_n) . Then G has order 2n - 1. Since Triangular snake (T_n) is obtained from a path P_n in which each edge of P_n is replaced by C_3 , we get n - 2 vertices have degree 4 and n + 1 vertices have degree 2. Hence $V(G, x) = (n - 2)x^4 + (n + 1)x^2, n \ge 2$.

Example: 2.3

Consider the Triangular snake T_3 . Then the corresponding graph is illustrated as follows;

Figure: 1

Here, $V(G, x) = x^4 + 4x^2$.

Result: 2.4

(i) Let G be a Triangular snake (T_n) . Then the vertex polynomial of $\zeta = G \cup G \cup ... \cup G$ (*m times*) is given by

 $V(\zeta, x) = m(n-2)x^4 + m(n+1)x^2, n \ge 2.$

(ii) Let G be a Triangular snake (T_n) . Then the vertex polynomial of mG is given by

 $V(mG, x) = m(n-2)x^{4+(m-1)(2n-1)} + m(n+1)x^{2+(m-1)(2n-1)}, n \ge 2.$

3. VERTEX POLYNOMIAL OF QUADRILATERAL SNAKE(Q_N), THEIR UNION AND THEIR SUM.

Definition: 3.1

A Quadrilateral Snake Q_n is obtained from a path $u_1u_2 \dots u_n$ by joining u_i and u_{i+1} to two new vertices v_i and w_i respectively and then joining v_i and w_i . That is every edge of a path is replaced by a cycle C_4 .

Theorem: 3.2

Let G be a Quadrilateral snake (Q_n) . Then the vertex polynomial of G is given by

$$V(G, x) = (n - 2)x^4 + 2nx^2, n \ge 2.$$

Proof:

Let *G* be a Quadrilateral snake(Q_n). Then *G* has order 3n - 2. Since Quadrilateral snake(Q_n) is obtained from a path P_n in which each edge of P_n is replaced by C_4 , we get n - 2 vertices have degree 4 and 2n vertices have degree 2. Hence $V(G, x) = (n - 2)x^4 + 2nx^2, n \ge 2$.

Example: 3.3

Consider the Quadrilateral snake(Q_3). Then the corresponding graph is explained as follows;

Here, $V(G, x) = x^4 + 6x^2$.

Result: 3.4

(i) Let G be a Quadrilateral snake (Q_n) . Then the vertex polynomial of $\zeta = G \cup G \cup ... \cup G$ (m times) is given by

$$V(\zeta, x) = m(n-2)x^4 + 2nmx^2, n \ge 2.$$

(ii) Let G be a Quadrilateral snake (Q_n) . Then the vertex polynomial of mG is given by

 $V(mG, x) = m(n-2)x^{4+(m-1)(3n-2)} + 2nmx^{2+(m-1)(3n-2)}, n \ge 2.$

4. VERTEX POLYNOMIAL OF DOUBLE TRIANGULAR SNAKE $D(T_n)$, THEIR UNION AND THEIR SUM.

Definition: 4.1

The Double Triangular Snake $D(T_n)$ consists of two Triangular snakes that have common path.

Theorem: 4.2

Let G be a Double Triangular snake $D(T_n)$. Then the vertex polynomial of G is given by

 $V(G, x) = (n - 2)x^6 + 2x^3 + (2n - 2)x^2, n \ge 2.$

Proof:

Let G be a Double Triangular snake with 3n - 2. From the definition of Double Triangular snake, n - 2 vertices have degree 6, 2 vertices have degree 3 and 2n - 2 vertices have degree 2 gives the required result.

Example: 4.3

Consider the Double Triangular snake $D(T_5)$. Then the corresponding graph is illustrated as follows;

Figure: 3

Here, $V(G, x) = 3x^6 + 2x^3 + 8x^2$.

Results: 4.4

- (i) Let G be a Double Triangular snake $D(T_n)$. Then the vertex polynomial of $\zeta = G \cup G \cup ... \cup G \ (m \ times)$ is given by $V(\zeta, x) = m(n-2)x^6 + 2mx^3 + m(2n-2)x^2, n \ge 2.$
- (ii) Let G be a Double Triangular snake $D(T_n)$. Then the vertex polynomial of mG is given by

$$V(mG, x) = m(n-2)x^{6+(m-1)(3n-2)} + 2mx^{3+(m-1)(3n-2)} + m(2n-2)x^{2+(m-1)(3n-2)}, n \ge 2.$$

5. VERTEX POLYNOMIAL OF DOUBLE QUADRILATERAL SNAKE $D(Q_N)$, THEIR UNION AND THEIR SUM.

Definition: 5.1

The Double Quadrilateral Snake $D(Q_n)$ consists of two Quadrilateral snakes that have common path. *Theorem: 5.2*

Let *G* be a Double Quadrilateral Snake $D(Q_n)$. Then the vertex polynomial of *G* is given by $V(G, x) = (n-2)x^6 + 2x^3 + 4(n-1)x^2, n \ge 2$.

Proof:

Let *G* be a Double Quadrilateral Snake with order 5n - 4. Since, the definition of Double Quadrilateral snake, n - 2 vertices have degree 6, 2 vertices have degree 3 and 4(n - 1) vertices have degree 2 gives that $V(G, x) = (n - 2)x^6 + 2x^3 + 4(n - 1)x^2, n \ge 2$.

Example: 5.3

Consider the Double Quadrilateral snake $D(Q_4)$. Then the corresponding graph is illustrated as follows;

Here, $V(G, x) = 2x^6 + 2x^3 + 12x^2$. *Results:* 5.4

- (i) Let G be a Double Quadrilateral snake $D(Q_n)$. Then the vertex polynomial of $\zeta = G \cup G \cup ... \cup G \ (m \ times)$ is given by $V(\zeta, x) = m(n-2)x^6 + 2mx^3 + 4m(n-1)x^2, n \ge 2.$
- (ii) Let G be a Double Quadrilateral snake $D(Q_n)$. Then the vertex polynomial of mGis given by $V(mG, x) = m(n-2)x^{6+(m-1)(5n-4)}$

$$+2mx^{3+(m-1)(5n-4)} + m(2n-2)x^{2+(m-1)(5n-4)}, n \ge 2$$

REFERENCES

[1] E. Ebin Raja Merly, A.M.Anto,"On Vertex Polynomial of Comb and Crown" International Journal of Advanced and Innovative Research (2278-7844) / # 53 / Volume 5 Issue 7

[2] Frank Harary, 1872,"*Graph Theory*", Addition – Wesly Publishing Company.

[3] Gary Chartrant and Ping Zank, "Introduction to Graph Theory", TATA McGRAW-HILL EDITION.

[4] J.Devaraj, E.Sukumaran "On Vertex Polynomial", International J. of Math.sci & Eng Appls(IJMESA) Vol. 6 No.1 (January, 2012), pp. 371-380.

[5] J.A.Gallian, 2010, A dynamic Survey of graph labeling. The electronic Journal of Combinatories 17#DS6.

[6] J.W.Archbold, "Algebra", LONDON SIR ISSAC PITMAN and SONS LTD".

[7] Zhiba Chen, "Integral Sum Graphs from Identification", Discrete Math 181 (1998), 77-90.