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Abstract— This paper describes techniques to perform 

efficient and accurate target recognition in different 

domains. In order to accurately model small, irregularly 

shaped targets, the target objects and images are 

represented by their edge maps, with a local orientation 

associated with each edge pixel and an overview of the 

methodologies and algorithms for segmenting 2D images 

as a means in detecting target objects embedded in visual 

images for Automatic Target Detection/Recognition 

applications. IT can be defined as a simple comparison 

between an observed image (image to recognize) and a 

reference image; 

 
Keywords— Target Detection, Image Processing, Image edge 

pixels, Automatic Recognition 

I. INTRODUCTION 

This paper considers methods to perform automatic target 

recognition by representing target models and images as sets 

of oriented edge pixels and performing matching in this 

domain. Automatic Target Detection/Recognition (ATDR) is 

an application of pattern recognition for image processing that 

detects and identifies types of target objects. ATDR is a major 

objective in processing digital images for detecting, 

classifying, and tracking target objects embedded in an image. 

Various methods exist for detecting objects of known type in a 

particular environment or image. The traditional approach to 

automatic target detection/recognition is to convert the signal 

from the sensor into a digital image for further processing. 

Next step is to separate the target from its background or 

surrounding area by extracting a coarse shape or outline of the 

target object and then to identify the object from features 

describing the target object. 

II. TARGET POSITION DETECTION 

Given an image or scene, S, and a target image, P, the neural 

system is to find the coordinates of the target image, P, in the 

scene, S. Additionally, given any sub-scene S’ containing the 

Target, P, the system is expected to find the image P and to 

return its coordinates with respect to S’. It is assumed that a 

reference scene S0 and a target image, P0, are known a priori. 

It is also assumed that the range, azimuth and elevation of the 

observation point of scene, S, from the target, P, are known to 

a reasonable accuracy. This information will be used to 

transform any sub-scene S’ to the same scale as S0, so as to 

produce a scene S for analysis of where the target P is located 

in S. The target image is typically derived from a photograph 

and the image to be matched may come from a video camera 

or another photograph. 

 

 
Figure 1. (a) The target image, (b) change of viewpoint, (c) 

change of scale 

 

In the simple images in Fig. 1, if (a) is the target image, P0, 

then (b) and (c) are the same target seen from a different angle 

or range. It can be seen that (b) and (c) can be made to 

approximate (a) by the application of suitable geometric 

transforms. It is not possible to obtain a perfect reconstruction 

of (a) from (b) owing to the three-dimensional nature of the 

Image since these images are available to the system in two-

dimensional form. 

III. ATDR THROUGH SEGMENTATION 

One of the common problems encountered in object 

detection/recognition is choosing a suitable approach for 

isolating different objects from each other as well as from the 

background. This separation of an image into object/s and 

background is usually done by simplifying and/or changing 

him representation of an image by enhancing the visual 

representation of boundaries (lines, curves, etc.). This makes 

the object differentiation, isolation and detection task easier. 

The process is known as image segmentation. Image 

segmentation is one of the primary steps in image analysis for 

object Detection, recognition and identification.  

IV.  MATCHING EDGE PIXELS IN ORDINARY IMAGE 
 

This section first reviews the definition of the Hausdorff 

measure and how a generalization of this measure can be used 
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to decide which object model positions are good matches to an 

image. This generalization of the Hausdorff measure yields a 

method for comparing edge maps that is robust to object 

occlusion, image noise, and clutter. 

 

A. The Hausdorff Measure 
 

The directed Hausdorff measure from  to , where 

and  are point sets, is 
 
 

 

where  is any norm. This yields the maximum distance of a 

point in set  from its nearest point in set . In the context of 

recognition, the Hausdorff measure is used to determine the 

quality of a match between an object model and an image. If 

 is the set of (transformed) object model pixels and  is the 

set of image edge pixels, the directed Hausdorff measure 

determines the distance of the worst matching object pixel to 

its closest image pixel. Of course, due to occlusion, it cannot 

be assumed that each object pixel appears in the image. The 

partial Hausdorff measure [11] between these sets is thus 

often used. It is given by 
 

(1) 

 

This determines the Hausdorff measure among the  object 

pixels that are closest to image pixels.  can be set to the 

minimum number of object pixels that are expected to be 

found in the image if the object model is present or  can be 

set such that the probability of a false alarm occurring is small. 

Since this measure does not require that all of the pixels in the 

object model match the image closely, it is robust to partial 

occlusion. Furthermore, noise can be withstood by accepting 

models for which this measure is nonzero, and this measure is 

robust to clutter that may appear in the image since it 

measures only the quality of the match from the model to the 

image and not vice versa.   
B. The Generalization to Oriented Points 
 

The Hausdorff measure can be generalized to incorporate 

oriented pixels by considering each edge pixel in both the 

object model and the image to be a vector in : 
 
 
 

Where  is the location of the point, and  is the local 

orientation of the point (e.g., the direction of the gradient, 

edge normal, or tangent). Typically, we are concerned with 

edge points on a pixel grid, and the  and  values thus fall 

into discrete sets. The orientations can be mapped into a 

discrete set in a similar manner. Let us call a set of image 

points that have been extended in this fashion an oriented 

image edge map  , and similarly, let us call such an extended 

set of points in the object model an oriented model edge map 

 .  

We now need a measure to determine how well these 

oriented edge maps match. Among pixels with the same ori-

entation, we would like the measure to reduce to the previous 

Hausdorff measure. Furthermore, the previous measure should 

be a lower bound on the new measure. One measure that 

fulfills these conditions is 
 
 

  
Our system discretizes the orientations such that  

and uses the    norm. In this case, the measure for oriented  
points simplifies to 
 
 
 

V. EDGE PIXELS IN UNDERWATER IMAGE 

 

In underwater imaging, visibility is a major problem. It varies 

from about 30 m in very clear water to about 0.75 m in very 

turbid water like a harbor water. The received image IR is the 

addition of the attenuated image IA, the forward scattered 

image IFS and the backscattered component 

 

 IBS:3 IR = IA + IFS + IBS (1) 

 

The light attenuation increases exponentially with distance 

(according to the Beer-Lambert law) and limits visibility. The 

backscattered component corresponds to the light that has 

been reflected by particles towards the video camera (see 

Figure 1A). This hides objects present in the scene. The 

forward scattered component is the light reflected by the 

object that has been diffused by particles on its way back to 

the camera, which produces blurred images (see Figure 1A). 

 

 
 

Figure 1.A. Diagram of the light propagation in an underwater 

medium 

It is possible to add artificial lighting in the scene; this 

increases the visibility range but it produces a non-uniform 

lighting. Video detects also particles on which light is 

reflected, called marine snow. These consequences of the 

underwater medium are annoying; especially backscattering 

that is the most important effect. Thus underwater images 

need preprocessing. 

A. Studied targets 

The studied targets are underwater mines (Figure 2). There are 

many kinds of mines. In this work we focus on three of them: 

spherical mines (Figure 2-a), cylindrical mines (Figure 2-b) 
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and Manta mines (Figure 2-c) (the Manta mine is a truncated 

cone). 

 
 

Figure 2. Grayscale images representing three studied targets that 

come from underwater videos: (a) a spherical mine, (b) a cylindrical 

mine  (c) and a Manta mine 

 

VI. SEARCH  STRATEGY 
 

Recent work has shown that efficient methods can be 

formulated to search the space of possible transformations of 

the model to find the position with the minimum Hausdorff 

measure or all positions where the measure is below some 

threshold. This section discusses how such methods operate in 

general and how they can be extended to oriented points. In 

addition, we describe techniques that are used to reduce the 

running time of the system when there are multiple object 

models that may appear in the image. 

 

A. Matching Edge based Pixels in ordinary image  
 

It is an edge matching technique that minimizes the sum of 

the distances from each object edge pixel to its closest image 

edge pixel over the space of possible transformations. This 

technique is closely related to minimizing the generalized 

Hausdorff measure, which instead minimizes the th largest 

of these distances. Since the cham-fer measure sums the 

distances over all of the object pixels, it is not robust to 

occlusion. In the original formulation of chamfer matching, 

Barrow et al. [1] used a starting hypothesis and an 

optimization procedure to determine a position of the model 

that is a local minimum with respect to the chamfer measure. 

This method requires a good starting hypothesis to converge 

to the global minimum.   
We want to determine the presence and location of a template 

T in an image I. 

                                   
 Edge-Template                            Image Scene 

 

Figure 3. Edge based Target Recognition 
 
B. Using Oriented Pixels in ordinary image 
 

Since the oriented object and image pixels have three 

degrees of freedom, a 3-D distance transform is now required. 

Before this can be computed, we must consider how rotations 

of object models will be treated since such rotations change 

the orientations of the object pixels. If we wish to rule out 

nearby transformations that may change the orientations of 

object pixels, then this must be accounted for the distance 

transform, but this is problematic since the discretization of 

the rotations in the transformation space will, in general, be 

very different from the discretization of the orientations of the 

edge pixels. To avoid this problem, each rotation of an object 

model is treated independently   
It must also be decided how the models will be rotated and 

scaled to compare them to the image. If a CAD model is 

available from which the edges of our targets can be 

determined, these models can be rotated before performing the 

edge detection stage since different rotations of the model are 

treated as (essentially) separate models. On the other hand, if 

the original model consists only of a set of edge points, each 

point is simply rotated around the center of the model. 

Similarly, scaling of the model is performed by scaling each 

point with respect to the center of the model.  
It is now possible to use Hausdorff matching techniques 

similar to those for unoriented points to perform efficient 

recognition.  

 
 

Figure 4. Hierarchical clustering of the models is performed as the 
canonical positions of the models relative to each other are 
determined. This figure s hows an example of the hierarchy produced 
by these techniques for 12 model views. The full silhouettes are 
shown rather than the edge maps for visual purposes. 
 

To process a single cell, the following steps are performed. 

First, a discrete transformation close to the center of the cell is 

chosen, and the maximum difference in the transformed 

location of a model pixel between the center transformation 

and any other transformation in the cell must be computed. 

This is bounded by the sum of the distance in the scale 

direction (by counting the number of discrete scales) between 

the transformations and the maximum of the distances in the  

and  directions since we use the  norm in the image space.  

 

C. Considering Multiple Models in ordinary image 
 

When there are multiple object models that may appear in a 

single image, there are methods by which the search can be 

made faster than examining each object model sequentially. 

This section describes one such method. Note that these object 

models need not come from separate objects; they may be 

alternate views of the same object.    

International Journal of Advanced and Innovative Research (2278-7844) / # 8 / Volume 5 Issue 8

   © 2016 IJAIR. All Rights Reserved                                                                                8



The method builds a tree of models using hierarchical 

clustering techniques [8]. At each step, the two closest models 

are determined and clustered. This yields a canonical position 

for these models with respect to each other and a new set of 

model points replacing the two previous models. The new 

ªmodelº is then compared with the remaining models as above, 

and the process is repeated until all of the models belong to a 

single hierarchically constructed model tree. At this point, 

canonical positions for each model with respect to the others 

have been computed, and a model hierarchy represented by a 

binary tree has been determined, where the leaves of the tree 

are individual models, and the remaining nodes correspond to 

the set of models below them in the tree. Fig. 4 shows a small 

example. 

 
 

Fig. 5. Markov chain that counts the number of object pixels that 
match image pixels. 

          
D. Correlation for water image 

 

Correlation is a signal and image processing method that 

compares a target image with a reference image. The result of 

this comparison is a more or less intense correlation peak, 

depending on the resemblance degree between these two 

images. Mathematically, correlation can be written: 

 

c(x0, y0) = h(x0, y0) _c s(x0, y0) 

 

 
 

where “c” is the result of the correlation operation, “∗c”is the 

correlation product,“∗” is the complex conjugate operator, “h” 

is a filter or reference, “s” is the image to analyze, “(x0, y0)” 

are spatial coordinates and “(x,y)” are integration variables. 

The correlation operation can be expressed with a Fourier 

transform: 
C(μ, v) = H∗(μ, v).S(μ,v) 

 

where μ and v are the coordinates in the frequency plane, C, S 

and H∗ are the respective Fourier transforms of functions c, s 

and h∗. The classical matched filter has been modified by 

introducing information in order to obtain some robustness to 

noise or orientation change for instance. Here we develop only 

three filters: classical matched filter, phase only filter (POF) 

and optimal trade-off filter (OT filter). Other filters have been 

developed, in the literature, like the binary phase only filter 

and the inverse filter. These filters, expressed in the Fourier 

plane, may then replace “H∗” in equation. 

 

The most known filter is the classical matched filter (FCMF ) 

defined in the Fourier plane as: 

FCMF (μ, v) = ∞S∗(μ, v) /  B(μ, v) 

where “S∗(μ,v)” denotes the complex conjugate of the 

reference, “B” the spectral density of the background and “∞” 

is a constant. This filter is robust but has a low discriminating 

power. The phase only filter (FPOF ) is defined in the Fourier 

plane as: 

FPOF (μ, v) =S∗(μ,v) / |S∗(μ,v)| 

 

Where “|S∗(μ, v)|” is the module of the reference spectrum. 

This filter gives a sharp correlation peak, it is very 

discriminative but also noise sensitive. The optimal trade-off 

filter (FOT) is defined in the Fourier plane as 

 

FOT (μ,v) =S∗(μ, v) / ∞B(μ, v) + (1 − ∞)|S∗(μ, v)| 

 

From now on, in this article, we will use only the POF filter. 

Since we need a discriminative filter. We don’t use the OT 

filter because in order to obtain good performances we have to 

know the spectral density of the background which must be 

very close to the one in the actual images. In underwater 

applications, it is very difficult to know the spectral density of 

the background because of the ocean floor, turbidity and all 

noises that perturb an image and vary throughout the video. 

Correlation is extremely fast. The fast Fourier transform 

takes O(n log(n)) arithmetical operations and each image 

multiplication takes O(n2) arithmetical operations, where n is 

one of the two size of the image to analyze (here, we suppose 

that image is a square image). 

 

VII. PROBABILITY OF A FALSE ALARM 

A. A Simple Model for Matching Oriented Pixels 
 

Let us consider matching a single connected chain of 

oriented object pixels to the image at some specified location. 

then the process is said to be a Markov process. If, 

furthermore, the probability does not depend on , then the 

process is a Markov chain. To determine the probability 

distribution of the number of hits over the entire object model, 

the number of hits so far in our chain  must be counted 
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explicitly. A separate state in the chain is thus used for each 

member of 

 

 

where  is the number of object pixels. If we are only 

interested in whether a false alarm of size  occurs, a Markov 

chain with  states can be used .If the final state of this 

chain is reached due to matches with random edge chains in 

the image, then a false alarm has occurred. 

Let  be a vector containing the probability of the chain 

starting in each state. The probability distribution among the 

states after examining the entire object chain is 
 
 
 

 

The last element of  is the probability that a false alarm 

of size  will occur at this position of the model. The 

probability that a false alarm of any other size  will 

occur can be determined by summing the appropriate elements 

of  . 

   

 
 

 
 

Figure. 6. Automatic target recognition example. (a) FLIR 
image after histogram equalization. (b) Edges found in the 
image. (c) Smoothed edges of a tank model. (d) Detected 
position of the tank. (e) False alarm. 
 
 

 B. An Accurate Model for Matching 
 

To model the matching process accurately, it is not correct 

to treat the state transition probabilities as independent of 

which pixel in the chain is examined.   
Its means that the stochastic process of pixel hits and misses 

is not a Markov chain, but it is still a Markov process. Let  

be the state transition matrix for the th object pixel in such a 

process. The state probability vector  is now given by 

  
· : The object pixel did not hit an image pixel.  
· : The object pixel hit a new pixel in the oriented image 

edge map.  
· : The object pixel hit the same pixel in the oriented 

image edge map as the previous object pixel.  
· : The object pixel hit the same pixel in the oriented 

image edge map as the previous two object pixels. 
 

 
          

 
 

 
 

 

 
Figugre. 7. Image sequence example. (a) Object model. (b) Part of the image 
frame from which the model was extracted. (c) Image frame in which we are 
searching for the model. (d) Position of the model located using orientation 
information. No false alarms were found for this case. (e) Several false alarms 
that were found when orientation information was not used. These each 
yielded a higher score than the correct position of the model. 

 

C. State Transition Probabilities 
 

The state transition probabilities must now be determined. 

These probabilities will be different in locations of the image 

that have different densities of edge pixels. Consider, for 

example, the probability of hitting a new pixel following a 

miss. The probability will be much higher if the window is 

dense with edge pixels rather than having few edge pixels. To 

model this, let us consider the window of the image that the 

object model overlays at some position. This is simply the 

rectangular sub image covered by the object model at this 

position. Each of these windows in the image will enclose 

some number  of image pixels. We call this the density of the 

image window. The state transition probabilities are closely 
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approximated by linear functions of the number of edge pixels 

present in the image window and belong to one of two classes: 
 

1)  Probabilities that are linear functions passing through 

the  origin  (i.e., Pr ):  The  probability  that  an 

object model pixel hits a new image pixel, when the 

previous object model pixel did not hit a new pixel, is 

approximated by such a linear function of the density of 

image edge pixels in the image window. The following 

state  transition  probabilities  are  thus  modeled  in  this 

manner:  and . Note that each has  
a different constant .  

2) Probabilities that are constant (i.e., Pr ): When the 

previous object model pixel hit an image pixel, the 

probability that the current object model pixel will hit the 

same image pixel is essentially constant. In addition, when 

the object model chain is following an image chain (i.e., 

the previous object model pixel hit a new image pixel), the 

probability that the object model chain continues to follow 

the image chain is approximately constant. The state 

transitions that are modeled in this manner are thus  

 , and  . 

  
The remaining probabilities can be determined as a function 

of these probabilities as follows: 
 
 
 
 
 

 

If the state at  is considered to be , this will yield the 

correct result for the first pixel in the object chain (i.e., ). 

In this case, there are no previous object model pixels to 

compare against, and the probability of an object pixel 

resulting in a hit at random is desired. Similarly, if the object 

model consists of more than one chain of pixels, the state is 

reset to  when a new chain is started. 

 

D. Probability of a False Alarm Over a Set of 

Transformations 
 

Let us now consider the probability that there exists a false 

alarm at any translation of the object model. As with the 

search strategy, only translations on the integer grid are 

considered. While this may miss the optimal translation for 

our matching measure, this can increase the size of the 

minimum Hausdorff measure over the space of possible 

translations by at most  when using the  norm.  
We do not assume that a target model will always appear 

either brighter or darker than the background in an image, but 

we do assume that individual targets will be either entirely 

brighter or entirely darker than the background, although this 

restriction can be easily removed. This means that each 

translation must be considered twice: once for the case when 

the target is brighter than the background and once for the 

case when the target is darker since the orientation of the point 

in these two cases will be shifted by . If  is the 

probability of a false alarm of size  at translation , the 

probability of a false alarm existing over all translations can 

be determined by computing 
 
 

 

This can be computed more efficiently if we have a his-

togram of the number of edge pixels contained in the image 

windows. Let  be the number of image windows containing  

edge pixels for , where   is the size of the window in 

pixels. The probability of a false alarm in two image windows 

containing the same number of image pixels is the same in 

this estimation model. Let  be the probability of a false 

alarm of size  in a window containing  edge pixels. 

The probability of a false alarm is now given by 

 

(3) 

  
E. Using the False Alarm Rate Estimate 
 

Now that we have a method to estimate the probability of a 

false alarm for any particular matching threshold, we can use 

the estimate to improve the performance of a recognition 

system that matches oriented edge pixels.  
One method by which we could use the estimate is to set 

the matching threshold such that the probability of a false 

alarm is below some predetermined probability. However, this 

can be problematic in very cluttered images since it can cause 

correct instances of targets that are sought to be missed. 

 
 

Fig. 8. One of the synthetic images used to generate ROC curves. 

VIII. PERFORMANCE 
 

Fig. 4 shows an example of the use of these techniques. The 

image is a low contrast infrared image of an outdoor terrain 

scene. After histogram equalization, a tank can be seen in the 

left-center of the image, although due to the low contrast, the 

edges of the tank are not clearly detected.   
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The current implementation of these techniques uses 16 

discrete orientations and  (each discrete orientation 

thus corresponds to  rad, but matches are also allowed with 

neighboring orientations). In these experiments, the allowable 

orientation and scale change of the object views was limited to 

 and , respectively, since we expect to have prior 

knowledge of the approximate range and orientation of the 

target. 

 

 
 

Fig. 9. Receiver operating characteristic (ROC) curves generated 
using synthetic data. (a) ROC curves when using orientation 
information. (b) ROC curves when not using orientation information. 

 

 

 

 

These techniques are not limited to automatic target recog-

nition. Fig. 6 shows an example of the use of these techniques in 

a complex indoor scene. In this case, the object model was 

extracted from a frame in an image sequence, and it is matched to 

a later frame in the sequence (as in tracking applications). Since 

little time has passed between these frames, it is assumed that the 

model has not undergone much rotation out of the im-age plane, 

and thus, a four-dimensional (4-D) transformation space is used, 

consisting of translation, rotation in the plane, and scale. The 

position of the object was correctly located when orientation 

information was used. No false alarms were found for this case. 

When orientation information was not used, several positions of 

the object were found that yielded a better score than the correct 

position of the object. 

 
 

 
Fig. 10. Predicted probability of a false alarm versus observed 
probability of a false alarm in trials using real images. 

 

We have generated ROC curves for this system using syn-

thetic edge images. Each synthetic edge image was generated 

with 10% of the pixels filled with random image clutter 

(curved chains of connected pixels). An instance of a target 

was placed in each image with varying levels of occlusion 

generated by removing a connected segment of the target 

boundary. Random Gaussian noise was added to the locations 

of the pixels corresponding to the target. The false alarm rate 

(FAR) estimation techniques were tested on real imagery. In 

these tests, the largest threshold at which a false alarm was 

found was determined for each object model and image in a 

test set. In addition, the FAR estimation techniques were used 

to determine the probability that a false alarm of at least this 

size would be determined in each case.  
 
 
 
 
 

IX. SEGMENTATION TECHNIQUES 

Several general-purpose techniques and algorithms have 

been developed for image segmentation. Since there is no 

general solution to the image segmentation problem, these 

techniques often have to be combined with domain knowledge 

in order to Effectively solve an image segmentation problem 

International Journal of Advanced and Innovative Research (2278-7844) / # 12 / Volume 5 Issue 8

   © 2016 IJAIR. All Rights Reserved                                                                                12



for a problem domain. Thus Image segmentation needs to be 

approached from a wide variety of perspectives. The 

following approaches of image segmentation are reviewed in 

this paper. 

a) Edge Detection Methods 

b) Histogram Based Methods 

c) Tree/Graph Based Methods 

d) Region Splitting Methods 

e) Region Growing Methods 

f) Model Based segmentation 

g) Neural Network Based segmentation 

h) Clustering Methods 

i) Graph Partitioning Methods 

j) Watershed Transformation 

k) Multiscale segmentation 

l) Probablistic and Bayesian approaches 

 
a). Edge-Detection Methods 

Edge detection is a well-developed field on its own 

within image processing. Region boundaries and edges are 

closely related, since there is often a sharp adjustment in 

intensity at the region boundaries. Edge detection techniques 

have therefore been used as the base of another segmentation 

technique. 

 

b). Histogram-Based Methods 

In this technique, a histogram is computed from all of 

the pixels in the image, and the peaks and valleys in the 

histogram are used to locate the clusters in the image. Color or 

intensity can be used as the measure 

 

c). Tree/Graph Based Methods 

Proposed a new approach for segmentation, which is 

derived from the consensus of a set of different segmentation 

outputs on one input image. Instead of statistics characterising 

the spatial structure of the local neighborhood of a pixel, for 

every pair of adjacent pixels the collected statistics are used 

for determining local homogeneity. From the ensemble of 

these initial segmentations, for every adjacent pixel pair a co-

occurrence probability is derived, which captures global 

information (about the image) at the local level (pixel level). 

The final segmentation of the input image is obtained by 

processing the co-occurrence probability field. 

 

 

d) Region Splitting Methods 

This is divide and conquer or top down method. In this 

method, the image is split or broken into a set of disjoint 

regions which are similar within themselves 

 Initially the entire image is treated as area of interest. 

 Next identify a region within the image which satisfy 

some similarity constraint. 

 If TRUE then the area of interest corresponds to a 

region in the image. 

 If FALSE split the region of interest and consider 

each of the sub-regions as the region of interest in 

turn. 

 This process continues until no further splitting 

occurs. 

 In the worst case this happens when the areas are just 

one pixel in size. 

 

e) Region Growing Methods 

Region growing is the opposite of the split and 

merges approach, Thus it is a bottom-up Approach. The steps 

are as below 

 An initial set of small areas are identified and 

iteratively merged according to similarity constraints. 

 An arbitrary seed pixel is chooses to begin with and 

is compared with neighbouring pixels. 

 Similar neighbouring pixels are added to the seed 

pixel and the region is grown by increasing the size 

of the region. 

 When no more similar pixels are available, another 

pixel which does not yet belong to any region is 

selected and the process is started again. 

 The process is continued until all pixels belong to 

some region. 

 

f) Model based Segmentation 

The central assumption of Model Based approach is that 

structures of interest/objects have a repetitive form of 

geometry. Therefore, one can seek for a probabilistic model 

towards explaining the variation of the shape of the object and 

then when segmenting an image impose constraints using this 

model as prior. Such a task involves 

(i) Registration of the training examples to a common 

pose, 

(ii) Probabilistic representation of the variation of the 

registered samples, and 

(iii) Statistical inference between the model and the 

image. State of the art methods in the literature for 

knowledge-based segmentation involve active shape 

and appearance models, active contours and 

deformable templates and level-set based methods. 

 

g). ANN Based segmentation 

Artificial Neural Network segmentation relies on 

processing small areas of an image using a neural network or 

a set of neural networks. After such processing the decision-

making mechanism marks the areas of an image accordingly 

to the category recognized by the neural network. 

h). Clustering Method segmentation 

Image segmentation can be performed effectively by 

clustering image pixels. Cluster analysis allows the 

partitioning of data into meaningful subgroups and it can be 

applied for image segmentation or classification purposes. 

International Journal of Advanced and Innovative Research (2278-7844) / # 13 / Volume 5 Issue 8

   © 2016 IJAIR. All Rights Reserved                                                                                13



Clustering analysis either requires the user to provide the 

seeds for the regions to be segmented or uses non-parametric 

methods for finding the salient regions without the need for 

seed points. Clustering is commonly used for image 

segmentation and unsupervised learning. 

The k-means algorithm is an algorithm to cluster n objects 

based on attributes into k partitions or groups, k < n. The K-

means algorithm is an iterative technique that is used to 

partition an image into K clusters. The basic algorithm is: 

 

 Pick K cluster centers, either randomly or based on 

some heuristic 

 Assign each pixel in the image to the cluster that 

minimizes the variance between the pixel and the 

cluster center. 

 Re-compute the cluster centers by averaging all of 

the pixels in the cluster. 

 Repeat steps 2 and 3 until convergence is attained 

(e.g. no pixels change clusters) 

 

i) Graph Partitioning Method 

In this method, the image being segmented is 

modelled as a weighted undirected graph. Each pixel is a node 

in the graph, and an edge is formed between every pair of 

pixels. The weight of an edge is a measure of the similarity 

between the pixels. The image is partitioned into disjoint sets 

(segments) by removing the edges connecting the segments. 

The optimal partitioning of the graph is the one that minimizes 

the weights of the edges that were removed (the “cut”). Shi’s 

algorithm seeks to minimize the “normalized cut”, which is 

the ratio of the “cut” to all of the edges in the set. 

 

j) Watershed Transformations 

The Watershed transformation considers the gradient 

magnitude of an image as a topographic surface. Pixels having 

the highest gradient magnitude intensities (GMIs) correspond 

to watershed lines, which represent the region boundaries. 

Water placed on any pixel enclosed by a common watershed 

line flows downhill to a common local intensity minima 

(LMI). Pixels draining to a common minimum form a 

catchment basin, which represent the regions 

 

k) Multiscale segmentation 

Multi-scale segmentation is a general framework for 

signal and image segmentation, based on the computation of 

image descriptors at multiple scales of smoothing. It included 

the notion that a one dimensional signal could be 

unambiguously segmented into regions, with one scale 

parameter controlling the scale of segmentation. When studied 

the problem of linking local extrema and saddle points over 

scales, and proposed an image representation called the scale 

space primal sketch which makes explicit the relations 

between structures at different scales, and also makes explicit 

which image features are stable over large ranges of scale 

including locally appropriate scales for those. Proposed to 

detect edges at coarse scales in scale space and then trace 

them back to finer scales with manual choice of both the 

coarse detection scale and the fine localization scale. 

 

l) Probabilistic and Bayesian approaches 

 Use co-occurrence based approach to image 

segmentation making use of region and boundary information 

in parallel for improved performance on a sequence of images. 

In this method, initial segmentation is done based on the 

location of the intensities of each pixel and its neighbours in 

the co-occurrence matrix. Each pixel is then associated with a 

tuple which specifies whether it belongs to a given region or if 

it is a boundary pixel. This tentative segmentation was then 

refined. The algorithm is less effective if the clusters in the co-

occurrence space have substantial overlap due to the 

imposition of local consistency. Since the techniques use 

global information in a local context, it was possible to adapt 

it to varying image characteristics i.e. variation in colour and 

texture. 

X. CONCLUSION  
 

This paper has discussed techniques to perform automatic 

target recognition by matching sets of oriented edge pixel in 

ordinary images, underwater images and importance of 

segmentation in image analysis and various methods of 

segmentation.  

We also discussed about matching technique of both 

ordinary image and under water image, a search strategy that 

allowed the full space of possible transformations to be 

examined quickly in practice using a hierarchical cell 

decomposition of the transformation space was then given. 

This method allows large volumes of the transformation space 

to be efficiently eliminated from consideration.  

Additional techniques for reducing the overall time 

necessary when any of several target models may appear in an 

image were also described. The probability that this method 

would yield false alarms due to random chains of edge pixels 

in the image was discussed in detail, and a method to estimate 

the probability of a false alarm efficiently at run time was 

given. This allows automatic target recognition to be 

performed adaptively by maintaining the false alarm rate at a 

specified value or to rank the competing hypotheses that are 

found on their likelihood of being a false alarm. 

 Experiments confirmed that the use of orientation 

information at each edge pixel, in addition to the pixel 

locations, considerably reduces the size and number of false 

alarms found. The experiments also indicated that the use of 

orientation information resulted in faster recognition.  

And finally, we discussed almost all image segmentation 

techniques proposed so far are ad hoc in nature. There are no 

general algorithms that will work for all images. One of the 

main objectives of segmentation algorithm is to precisely 

segment the image without under or over segmentation. 
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