
 Revocable Data Access Control for Multi-

Authority Cloud Storage

Pilli.Sridevi
 1
, Gangalam.Swathi

 2
, Shaik.Abdul Nabi

 3

1 M.Tech, Computer Science and engineering in AVN institute of engineering and technology
2 Assistant Professor of CSE Dept in AVN institute of engineering and technology
3 Professor & HOD Dept. of CSE in AVN institute of engineering and technology

Abstract—Data access control is an effective way to

ensure the data security in the cloud. Due to data

outsourcing and untrusted cloud servers, the data

access control becomes a challenging issue in cloud

storage systems. Ciphertext-Policy Attribute-based

Encryption (CP-ABE) is regarded as one of the most

suitable technologies for data access control in cloud

storage, because it gives data owners more direct

control on access policies. However, it is difficult to

directly apply existing CP-ABE schemes to data access

control for cloud storage systems because of the

attribute revocation problem. In this paper, we design

an expressive, efficient and revocable data access

control scheme for multi-authority cloud storage

systems, where there are multiple authorities co-exist

and each authority is able to issue attributes

independently. Specifically, we propose a revocable

multi-authority CP-ABE scheme, and apply it as the

underlying techniques to design the data access control

scheme. Our attribute revocation method can

efficiently achieve both forward security and

backward security. The analysis and simulation results

show that our proposed data access control scheme is

secure in the random oracle model and is more

efficient than previous works.

Index Terms—Access control, multi-authority, CP-

ABE, attribute revocation, cloud storage.

I. INTRODUCTION

CLOUD storage is an important service of cloud
computing [1], which offers services for data owners
to host their data in the cloud. This new paradigm of
data hosting and data access services introduces a
great challenge to data access control. Because the
cloud server cannot be fully trusted by data owners,
they can no longer rely on servers to do access
control. Ciphertext-Policy Attribute-based Encryp-
tion (CP-ABE) [2], [3] is regarded as one of the most
suitable technologies for data access control in cloud
storage systems, because it gives the data owner more
direct control on access policies. In CP-ABE scheme,
there is an authority that is responsible for attribute
management and key distribution. The authority can
be the registration office in a university, the human
resource department in a company, etc. The data
owner defines the access policies and encrypts data
accord-ing to the policies. Each user will be issued a

secret key reflecting its attributes. A user can decrypt
the data only when its attributes satisfy the access
policies.

There are two types of CP-ABE systems: single-

author-ity CP-ABE [2], [3], [4], [5] where all

attributes are managed by a single authority, and

multi-authority CP-ABE [6], [7], [8] where attributes

are from different domains and man-aged by different

authorities. Multi-authority CP-ABE is more

appropriate for data access control of cloud storage

systems, as users may hold attributes issued by

multiple authorities and data owners may also share

the data using access policy defined over attributes

from different authorities. For example, in an E-

health system, data owners may share the data using

the access policy ‘‘Doctor AND Researcher’’, where

the attribute ‘‘Doctor’’ is issued by a medical

organization and the attribute ‘‘Researcher’’ is issued

by the administrators of a clinical trial. However, it is

difficult to directly apply these multi-authority CP-

ABE schemes to multi-authority cloud storage

systems because of the attribute revocation problem.

In multi-authority cloud storage systems, users’

attri-butes can be changed dynamically. A user may

be entitled some new attributes or revoked some

current attributes. And his permission of data access

should be changed accordingly. However, existing

attribute revocation meth-ods [9], [10], [11], [12]

either rely on a trusted server or lack of efficiency,

they are not suitable for dealing with the attribute

revocation problem in data access control in multi-

authority cloud storage systems.

In this paper, we first propose a revocable multi-

authority CP-ABE scheme, where an efficient and

secure revocation method is proposed to solve the

attribute revocation problem in the system. As

described in Table 1, our attribute revocation method

is efficient in the sense that it incurs less

communication cost and computation cost, and is

secure in the sense that it can achieve both backward

security (The revoked user cannot decrypt any new

ciphertext that requires the revoked attribute to

International Journal of Advanced and Innovative Research (2278-7844) / # 100 / Volume 5 Issue 8

 © 2016 IJAIR. All Rights Reserved 100

decrypt) and forward security (The newly joined user

can also decrypt the previously published

ciphertexts
1
, if it has sufficient

1. The previous ciphertexts may be associated
with the attribute in a previous version,
while the newly joined user may be issued
an attribute in a new version.

TABLE 1

Comprehensive Comparison of Attribute Revocation
Methods for CP-ABE Systems

 Our scheme does not require the server to be fully

trusted, because the key update is enforced by each

attribute authority not the server. Even if the server is

not semi-trusted in some scenarios, our scheme can

still guarantee the backward security. Then, we apply

our proposed revocable multi-authority CP-ABE

scheme as the underlying techniques to construct the

expressive and secure data access control scheme for

multi-authority cloud storage systems.

Compared to the conference version [14] of this
work, we have the following improvements:

1. We modify the framework of the scheme and

make it more practical to cloud storage

systems, in which data owners are not

involved in the key generation. Specifically, a

user’s secret key is not related to the owner’s

key, such that each user only needs to hold

one secret key from each authority instead of

multiple secret keys associated to multiple

owners.

2. We greatly improve the efficiency of the

attribute revocation method. Specifically, in

our new attribute revocation method, only the

cipher texts that associated with the revoked

attribute needs to be updated, while in [14], all

the cipher texts that associated with any

attribute from the authority (corresponding to

the revoked attribute) should be updated.

Moreover, in our new attribute revocation

method, both the key and the cipher text can

be updated by using the same update key,

instead of requiring the owner to generate an

update information for each cipher text, such

that owners are not required to store each

random number generated during the

encryption.

3. We also highly improve the expressiveness of

our access control scheme, where we remove

the limitation that each attribute can only

appear at most once in a cipher text.

The remaining of this paper is organized as

follows. We give the definition of the system model,

framework and the security model in Section 2.

Section 3 gives the detailed construction of our data

access control scheme for multi-authority cloud

storage systems. Sections 4 and 5 give the security

analysis and performance analysis respectively.

Section 6 gives the related work on ABE and

attributes revocation methods. The conclusion is

given in Section 7. In the supplemental file which is

available in the Computer Society Digital Library at

http://doi.ieeecomputersociety.org/10. 1109/253, we

give some preliminary definitions and describe the

full security proof of our data access control scheme.

2 SYSTEM MODEL AND SECURITY MODEL

2.1 System Model

We consider a data access control system in multi-

authority cloud storage, as described in Fig. 1. There

are five types of entities in the system: a certificate

authority (CA), attribute authorities (AAs), data

owners (owners), the cloud server (server) and data

consumers (users).

The CA is a global trusted certificate authority in

the system. It sets up the system and accepts the

registration of all the users and AAs in the system.

For each legal user in the system, the CA assigns a

global unique user identity to it and also generates a

global public key for this user. However, the CA is

not involved in any attribute manage-ment and the

creation of secret keys that are associated with

attributes. For example, the CA can be the Social

Security Administration, an independent agency of

the United States government. Each user will be

issued a Social Security Number (SSN) as its global

identity.

Every AA is an independent attribute authority

that is responsible for entitling and revoking user’s

attributes according to their role or identity in its

domain. In our scheme, every attribute is associated

with a single AA, but each AA can manage an

arbitrary number of attributes. Every AA has full

control over the structure and semantics of its

attributes. Each AA is responsible for generating a

public attribute key for each attribute it manages and

International Journal of Advanced and Innovative Research (2278-7844) / # 101 / Volume 5 Issue 8

 © 2016 IJAIR. All Rights Reserved 101

a secret key for each user reflecting his/her attributes.

Every AA is an independent attribute authority that is

responsible for entitling and revoking user’s

attributes according to their role or identity in its

domain. In our scheme, every attribute is associated

with a single AA, but each AA can manage an

arbitrary number of attributes. Every AA has full

control over the structure and semantics of its

attributes. Each AA is responsible for generating a

public attribute key for each attribute it manages and

a secret key for each user reflecting his/her attributes.

Fig. 1. System model of data access control in multi-
authority cloud storage.

Each user has a global identity in the system. A

user may be entitled a set of attributes which may

come from multiple attribute authorities. The user

will receive a secret key associated with its attributes

entitled by the corresponding attribute authorities.

Each owner first divides the data into several

compo-nents according to the logic granularities and

encrypts each data component with different content

keys by using symmetric encryption techniques.

Then, the owner defines the access policies over

attributes from multiple attribute authorities and

encrypts the content keys under the policies. Then,

the owner sends the encrypted data to the cloud

server together with the ciphertexts.
2
 They do not rely

on the server to do data access control. But, the

access control happens inside the cryptography. That

is only when the user’s attributes satisfy the access

policy defined in the ciphertext, the user is able to

decrypt the ciphertext. Thus, users with different

attributes can decrypt different number of content

keys and thus obtain different granula-rities of

information from the same data.

2.2 Framework
The framework of our data access control scheme is
defined as follows.

Definition 1 (Framework of Multi-Authority Access

Control Scheme).

The framework of data access control scheme for

multi-authority cloud storage systems contains the

following phases:

Phase 1: System Initialization. This phase consists of
CA setup and AA setup with the following
algorithms:

The CA setup algorithm is run by the CA. It takes no
input other than the implicit security parameter . It
generates the global master key GMK of the system
and the global public parameters GPP. For each user
uid, it generates the user’s global public keys
GPK;GPK, the user’s global secret keys GSK; GSKÞ
and a certificate of the user.

The attribute authority setup algorithm is run by each
attribute authority. It takes the attribute universe Uaid
managed by the AAaid as input. It outputs a secret and
public key pair (SKaid; PKaid) of the AAaid and a set of
version keys and public keys.

Phase 2: Secret Key Generation by AAs. SKey Gen

(GPP ; GPKuid ; GPK
0

uid ; GSKuid ; SKaid; cret) key

generation algorithm is run by each AA. It takes as

inputs the global public parameters GPP, the global

public keys (GPKuid; GPK
0
uid) and one global secret

key GSKuid of the user uid, the secret key SKaid

2. In this paper, we simply use the ciphertext to
denote the encrypted content keys with CP-
ABE.

Phase 3: Data Encryption by Owners. Owners first

encrypt the data m with content keys by using

symmetric encryption methods, then they encrypt the

content keys by running the following encryption

algorithm:

Phase 4: Data Decryption by Users. Users first run the
decryption algorithm to get the content keys, and use

them to further decrypt the data.

The decryption algorithm is run by users to decrypt

the ciphertext. It takes as inputs the ciphertext CT

which contains an access policy A, a global public

key GPKuid and a global secret key GSK
0

uid.

International Journal of Advanced and Innovative Research (2278-7844) / # 102 / Volume 5 Issue 8

 © 2016 IJAIR. All Rights Reserved 102

Phase 5: Attribute Revocation. This phase contains

three steps: Update Key Generation by AAs, Secret

Key Update by Non-revoked Users
5
 and Cipher text

Update by Server.

The update key generation algorithm is run by the
corresponding AAaid0 that manages the revoked
attribute x~aid0 .

3. The access policy is a LSSS structure M; which is
defined in the supplemental file available online.

4. We denote those users who possess the revoked
attributes x~aid0 but have not be revoked as the non-
revoked users.

5. We denote those users who possess the revoked
attributes x~aid0 but have not be revoked as the non-
revoked users.

6. Security Model
In multi-authority cloud storage systems, we make
the following assumptions:

 The CA is fully trusted in the system. It will

not collude with any user, but it should be
prevented from decrypting any ciphertexts

by itself.

 Each AA is trusted but can be corrupted by the

adversary.

 The server is curious but honest. It is curious
about the content of the encrypted data or

the received message, but will execute
correctly the task assigned by each attribute

authority.

 Each user is dishonest and may collude to
obtain unauthorized access to data.

2.3.1 Decisional q-Parallel Bilinear Diffie-

Hellman Exponent Assumption

We recall the definition of the decisional q-parallel
Bilinear Diffie-Hellman Exponent (q-parallel BDHE)
problem in [3] as follows. Chooses a group G of
prime order p according to the security parameter.
Let a; b1; . . . ; bq; s 2 Zp be chosen at random and g
be a generator of G. If an adversary is given

it must be hard to distinguish a valid tuple eðg; gÞ
aqþ1

s
 2 GT from a random element R in GT .

An algorithm B that outputs z 2 f0; 1g has advantage
in solving q-parallel BDHE in G if

Definition 2. The decisional q-parallel BDHE
assumption holds if no polynomial time algorithm
has a non-negligible advantage in solving the q-
parallel BDHE problem.

2.3.2 Security Model

We now describe the security model for our

revocable multi-authority CP-ABE systems by the

following game between a challenger and an

adversary. Similar to the identity-based encryption

schemes [15], the security model allows the

adversary to query for any secret keys and update

keys that cannot be used to decrypt the challenge

ciphertext. We assume that the adversaries can

corrupt authorities only statically similar to [6], [7],

[8], but key.

Setup. The global public parameters are generated

by running the CA setup algorithm. The adversary

specifies a set of corrupted attribute authorities SA
0
 S

A. The chal-lenger generates the public keys by

running the attribute authority setup algorithm and

generates the secret keys by running the secret key

generation algorithm. For uncor-rupted attribute

authorities in SA SA
0
, the challenger only sends the

public keys to the adversary. For corrupted

authorities in SA
0
, the challenger sends both the

public keys and secret keys to the adversary. The

adversary can also get the global public parameters.

Phase 1. The adversary makes secret key queries
by submitting pairs ðuid; SuidÞ to the challenger,
where

Suid ¼ fSuid;aidk gaidk2SA SA0 is a set of attributes
belonging to several uncorrupted AAs, and uid is a
user identifier. The challenger gives the
corresponding set of secret keys fSKuid;aidk g to the
adversary. The adversary also makes update key
queries by submitting a set of attributes Said

0
. The

challenger gives the corresponding update keys to the
adversary.

The adversary submits two equal length messages m0
and m1. In addition, the adversary gives a challenge
access structure ðM ; Þ which must satisfy the
following constraints: Let V denote the subset of
rows of M labeled by attributes controlled by
corrupted AAs. For each uid, let Vuid denote the
subset of rows of M labeled by attributes x belongs to
the attribute sets that the adversary has queried. For
each uid, we require that the subspace spanned by V [
Vuid must not include ð1; 0; . . . ; 0Þ. In other words,
the adversary cannot ask for a set of keys that allow
decryption, in combination with any keys that can
obtained from corrupted AAs. The challenger then
flips a random coin c, and encrypts mc under the
access structure ðM ; Þ. Then, the ciphertext CT is
given to the adversary.

International Journal of Advanced and Innovative Research (2278-7844) / # 103 / Volume 5 Issue 8

 © 2016 IJAIR. All Rights Reserved 103

Phase 2. The adversary may query more secret

keys and update keys, as long as they do not violate

the constraints on the challenge access structure ðM ;

Þ and the following constraints: None of the updated

secret keys (generated by the queried update keys and

the queried secret keys
6
) is able to decrypt the

challenged ciphertexts. In other words, the adversary

is not able to query the update keys that can update

the queried secret keys to the new secret keys that

can decrypt the challenge ciphertext.

Guess. The adversary outputs a guess c
0
 of c.The

advantage of an adversary A in this game is defined

as Pr½c
0
 ¼ c&

1
2.

Definition 3. A revocable multi-authority CP-ABE

scheme is secure against static corruption of

authorities if all polynomial time adversaries have

at most a negligible advantage in the above

security game.

6. There is another reason that makes the queried
secret keys cannot decrypt the challenge ciphertext.
That is at least one of the attributes in the previous
queried secret keys may be not in the current version.

3 OUR DATA ACCESS CONTROL SCHEME

In this section, we first give an overview of the

challenges and techniques. Then, we propose the

detailed construc-tion of our access control scheme

which consists of five phases: System Initialization,

Key Generation, Data En-cryption, Data Decryption

and Attribute Revocation.

3.1 Overview

To design the data access control scheme for multi-

authority cloud storage systems, the main challenging

issue is to construct the underlying Revocable Multi-

authority CP-ABE protocol. In [6], Chase proposed a

multi-authority CP-ABE protocol, however, it cannot

be directly applied as the underlying techniques

because of two main reasons: 1) Security Issue:

Chase’s multi-authority CP-ABE protocol allows the

central authority to decrypt all the ciphertexts, since it

holds the master key of the system; 2) Revocation

Issue: Chase’s protocol does not support attribute

revocation.

We propose a new revocable multi-authority CP-

ABE protocol based on the single-authority CP-ABE

proposed by Lewko and Waters in [16]. That is we

extend it to multi-authority scenario and make it

revocable. We apply the techniques in Chase’s multi-

authority CP-ABE protocol [6] to tie together the

secret keys generated by different authorities for the

same user and prevent the collusion attack.

Specifically, we separate the functionality of the

authority into a global certificate authority (CA) and

multiple attribute authorities (AAs). The CA sets up

the system and accepts the registration of users and

AAs in the system.
7
 It assigns a global user identity

uid to each user and a global authority identity aid to

each attribute au-thority in the system. Because the

uid is globally unique in the system, secret keys

issued by different AAs for the same uid can be tied

together for decryption. Also, because each AA is

associated with an aid, every attribute is distinguish-

able even though some AAs may issue the same

attribute.

To deal with the security issue in [6], instead of using

the system unique public key (generated by the

unique master key) to encrypt data, our scheme

requires all attribute authorities to generate their own

public keys and uses them to encrypt data together

with the global public parameters. This prevent the

certificate authority in our scheme from decrypting

the ciphertexts.

To solve the attribute revocation problem, we assign

a version number for each attribute. When an

attribute revocation happens, only those components

associated with the revoked attribute in secret keys

and ciphertexts need to be updated. When an attribute

of a user is revoked from its corresponding AA, the

AA generates a new version key for this revoked

attribute and generates an update key. With the

update key, all the users, except the revoked user,

who hold the revoked attributes can update its secret

key (Backward Security). By using the update key,

the components associated with the revoked attribute

in the ciphertext can also be updated to the current

version. To improve the efficiency, we delegate the

workload of ciphertext update to the server by using

the proxy re-encryption method, such that the newly

joined user is also able to decrypt the previously

published data, which are encrypted with the

previous public keys, if they have sufficient attributes

(Forward Security). Moreover, by updating the

ciphertexts, all the users need to hold only the latest

secret key, rather than to keep records on all the

previous secret keys.

3.2 System Initialization

The system initialization contains CA Setup and AA

Setup.

International Journal of Advanced and Innovative Research (2278-7844) / # 104 / Volume 5 Issue 8

 © 2016 IJAIR. All Rights Reserved 104

3.2.1 CA Setup

The CA sets up the system by running the CA setup
algorithm CASetup, which takes a security parameter
as input. The CA first chooses two multiplicative
groups G and GT with the same prime order p and a
bilinear map e : G G ! GT . I t a l s o c h o o s e a h a s
h f u n c t i o n H : f0; 1 g ! G that matches the string
to an element in G, such that the security will be
modeled in the random

oracle. Then, the CA chooses two random numbers

a; b 2 Zp as the global master key GMK ¼ ða; bÞ of the

system and computes the global public parameters as

GPP ¼ ðg; g
a
; g

b
; HÞ:

The CA accepts both User Registration and AA

Registration. 1) User Registration: Every user should

register to the CA during the system initialization. If

the user is a legal user in the system, the CA then

assigns a globally unique user identity uid to this

user. For eachuser uid, the CA first

generates two random numbers uuid; u
0

uid 2 Zp as its
global secret keys

GSKuid ¼ uuid; GSK
0

uid ¼ u
0
uid:

It then generates the user’s global public keys as

GPKuid ¼ g
uuid

 ; GPK
0

uid ¼ g
u0uid

 :

The CA also generates a certificate CertificateðuidÞ
for the user uid. Then, the CA sends one of the user’s
global public keys GPKuid, one global secret key
GSK

0
uid and the Certificate CertificateðuidÞ to the

user uid.

2) AA Registration: Each AA should also register

itself to the CA during the system initialization. If the

AA is a legal authority in the system, the CA first

assigns a global attribute authority identity aid to this

AA. Then, the CA sends the other global

public/secret key of each user ðGPK
0
uid; GSKuidÞ to

the AAaid. It also sends a verification key to the

AAaid, which can be used to verify the certificates of

users issued by the CA.

3.2.2 AA Setup

Let Said denote the set of all attributes managed by
each attribute authority AAaid. It chooses three
random

numbers aid; aid; aid 2 Zp as the authority secret key

Fig. 2. Format of data on cloud server.

for attribute revocation. It also generates the public

key
PKaid as

For each attribute xaid 2 Said, the AAaid generates a

public attribute key as

by implicitly choosing an attribute version key as

VKxaid ¼ vxaid . All the public attribute keys

fPKxaidgxaid2Said are published on the public

bulletin board of the AAaid,together with the public

key PKaid of the AAaid.

3.3 Secret Key Generation

Each user uid is required to authenticate itself to the
AAaid before it can be entitled some attributes from
the AAaid. The user submits its certificate
Certificateðuid Þ to the AAaid. The AAaid then
authenticates the user by using the verification key
issued by the CA.

If it is a legal user, the AAaid entitles a set of
attributes Suid;aid to the user uid according to its role or
identity in its administration domain. Otherwise, it
aborts. Then, the AAaid generates the user’s secret
key SKuid;aid by running the secret key generation
algorithm SKeyGen. It chooses a random number
tuid;aid 2 Zp and computes the user’s secret key as

If the user uid does not hold any attribute from AAaid,
the secret key SKuid;aid only contains the first
component

3.4 Data Encryption

Before hosting data m to cloud servers, the owner
processes the data as follows.

1) It divides the data into several data
components as m ¼ fm1; . . . ; mng
according to the logic granula-rities. For
example, the personal data may be divided

International Journal of Advanced and Innovative Research (2278-7844) / # 105 / Volume 5 Issue 8

 © 2016 IJAIR. All Rights Reserved 105

into {name, address, security number,
employer, salary}.

2) It encrypts data components with different
con-tent keys f 1; . . . ; ng by using
symmetric en-cryption methods.

3) It then defines an access structure Mi for
each content key iði ¼ 1; . . . ; nÞ and
encrypts it by running the encryption
algorithm Encrypt.

The encryption algorithm Encrypt takes as inputs

the global public parameters GPP, a set of public

keys

fPKaidk gaidk 2IA for all the AAs in the encryption set

IA, the content key and an access structure ðM; Þ

over all the involved attributes. Let M be a ‘ n matrix,

where ‘ denotes the total number of all the attributes.

The function maps each row of M to an attribute. In

this construction, we remove the limitation that

should be an injective function (i.e., an attribute can

associate with more than one rows of M).

To encrypt the content key , the encryption
algorithm first chooses a random encryption
exponent s 2 Zp and chooses a random vector ~v¼ ðs;
y2; . . . ; ynÞ 2 Z

n
p, where y2; . . . ; yn are used to share

the encryption exponent s. For i ¼ 1 to ‘, it computes

i ¼ ~v Mi, where Mi is the vector corresponding to
the i-th row of M. Then, it randomly chooses r1; r2; . .
. ; r‘ 2 Zp and computes the ciphertext as

After that, the owner sends the data to the server in

the
format as described in Fig. 2.

3.5 Data Decryption

All the legal users in the system can freely query any

interested encrypted data. Upon receiving the data

from the server, the user runs the decryption

algorithm Decrypt to decrypt the ciphertext by using

its secret keys from different AAs. Only the attributes

the user possesses satisfy the access structure defined

in the ciphertext CT, the user can get the content key.

The decryption algorithm DecryptðCT; GPKuid;

GSK
0

uid;

fSKuid;aidk gaidk2IA Þ ! can be constructed as follows. It
takes as inputs the ciphertext CT which contains an
access policy ðM; Þ, a global public key GPKuid and
a global secret key GSK

0
uid of the user uid, and a set

of secret keys fSKuid;aidk gaidk 2IA from all the involved
AAs. If the user’s attributes can satisfy the access
structure, then the user uid proceeds as follows.

Let I be fIaidk gaidk2IA , where Iaidk f1; 2; . . . ; ‘g is

defined as Iaidk ¼ fi : ðiÞ 2 Saidk g. Let nA ¼ jIAj be the

number of AAs involved in the ciphertext. Then, it

chooses a set of constants fwi 2 Zpgi2I and

reconstructs the encryption exponent as s ¼ Pi2I wi_i

if f_ig are valid shares of the secret s according to M.

The decryption algorithm first computes

Thus, the user can obtain
Q

k2IA eðg; gÞ
aidk

s
 and use it

to decrypt the ciphertext as

Then, the user can use the decrypted content key to
further decrypt the encrypted data component.

3.6 Attribute Revocation

As we described before, there are two requirements

of the attribute revocation: 1) The revoked user

(whose attribute is revoked) cannot decrypt new

ciphertexts encrypted with new public attribute keys

(Backward Security); 2) the newly joined user who

has sufficient attributes should also be able to decrypt

the previously published ciphertexts, which are

encrypted with previous public attribute keys

(Forward Security). For example, in a university,

some archive documents are encrypted under the

policy ‘‘CS Dept. AND (Professor OR PhD

Student)’’, which means that only the professors or

International Journal of Advanced and Innovative Research (2278-7844) / # 106 / Volume 5 Issue 8

 © 2016 IJAIR. All Rights Reserved 106

PhD students in CS department are able to decrypt

these documents. When a new professor/PhD student

joins the CS department of the university, he/she

should also be able to decrypt these documents. Our

attribute revocation methods can achieve both

forward security and backward security.

Suppose an attribute x~aid0 is revoked from the
user uid

0
 by the AAaid0 . The attribute x~aid0 is

denoted as the Revoked Attribute and the user uid
0
 is

denoted as the Revoked User. We also use the term
of Non-revoked Users to denote the set of users who
possess the revoked attribute x~aid0 but have not been
revoked. Our revocation methods contains the
following three steps:

3.6.1 Update Key Generation

When an attribute x~aid0 is revoked from a user, the
corresponding authority AAaid0 runs the update key
generation algorithm UKeyGen to compute the
update keys. The algorithm takes as inputs the secret
key SKaid0 of AAaid0 , the revoked attribute x~aid0
and its current version

The AAaid0 then generates a unique update key
UKs;x~aid0 ;uid for secret key update by each non-
revoked user uid as

The AAaid0 sends the UKs;x~aid0 ;uid to non-revoked
user uid and sends UKc;x~aid0 to the cloud server.

Then, the AAaid0 updates the public attribute key of
the revoked attribute x~aid0 as

and publishes it on its public bulletin board. Then, the

AAaid0 broadcasts a message for all the owners that

the public attribute key of the revoked attribute x~aid0

is updated.

3.6.2 Secret Key Update by Non-Revoked Users
Upon receiving the update key UKs;x~aid0 ;uid, the user
uid then update his/her secret key by running the new
secret key update algorithm SK Update as

Note that only the component associated with the
revoked attribute x~aid0 in the secret key needs to be
updated, while other components are kept unchanged.

3.6.3 Ciphertext Update by Cloud Server

To ensure that the newly joined user who has

sufficient attributes can still decrypt those previous

data which are published before it joined the system

(Forward Security), all the ciphertexts associated

with the revoked attribute are required to be updated

to the latest version. Intuitively, the ciphertext update

should be done by data owners, which will incur a

heavy overhead on the data owner. To improve the

efficiency, we move the workload of ciphertext

update from data owners to the cloud server, such

that it can eliminate the huge communication

overhead between data owners and cloud server, and

the heavy computation cost on data owners. The

ciphertext update is conducted by using proxy re-

encryption method, which means that the server does

not need to decrypt the ciphertext before updating.

Upon receiving the update key UKc;x~aid0 from the

authority. The cloud server runs the ciphertext update

algorithm CTUpdate to update the ciphertext

associated with the revoked attribute x~aid0 . It takes

as inputs the ciphertexts associated with the revoked

attribute x~aid0 and the update key UKc;x~aid0 . It

updates the ciphertext that are associated with the

revoked attribute x~aid0 as

From the above equation Eq. (3.1), it is easy to find

that our scheme only requires to update those

components associated with the revoked attribute of

International Journal of Advanced and Innovative Research (2278-7844) / # 107 / Volume 5 Issue 8

 © 2016 IJAIR. All Rights Reserved 107

the ciphertext, while the other components which are

not related to the revoked attribute are not changed.

In this way, our scheme can greatly improve the

efficiency of attribute revocation.

The ciphertext update not only can guarantee the

backward security of the attribute revocation, but also

can reduce the storage overhead on users (i.e., all the

users need to hold only the latest secret key, rather

than to keep records on all the previous secret keys).

The cloud server in our system is required to be semi-

trusted. Even if the cloud server is not semi-trusted in

some scenarios, the server will not update the

ciphertexts correctly. In this situation, the forward

security cannot be guaranteed, but our system can

still achieve the backward security.

TABLE 2

Storage Overhead on Each Entity

4 SECURITY ANALYSIS

We prove that our data access control is secure under

the security model we defined, which can be
summarized as in the following theorems.

Theorem 1. When the decisional q-parallel BDHE
assumption holds, no polynomial time adversary
can selectively break our system with a challenge

matrix of size l n , where n q.

Proof. The proof is given in the supplemental file

available online. g

Theorem 2. Our scheme can achieve both Forward
Security and Backward Security.

Proof. Actually, the Forward Security and Backward

Security are two basic requirements of attribute

revocation. Now we prove that our scheme can

achieve this two require-ments as follows.

Backward Security: During the secret key update

phase, the corresponding AA generates an update key

for each non-revoked user. Because the update key is

associated with the user’s global identity uid, the

revoked user cannot use update keys of other non-

revoked users to update its own secret key, even if it

can compromise some non-revoked users. Moreover,

suppose the revoked user can corrupt some other

AAs (not the AA corresponding to the revoked at-

tributes), the item HðxaidÞ
vxaid aid aid

 in the secret key

can prevent users from updating their secret keys

with update keys of other users, since aid is only

known by the AAaid and kept secret to all the users.

This guarantees the back-ward security.

Forward Security: After each attribute revocation

oper-ation, the version of the revoked attribute will

be updated. When new users join the system, their

secret keys are as-sociated with attributes with the

latest version. However, previously published

ciphertexts are encrypted under at-tributes with old

version. The ciphertext update algorithm in our

protocol can update previously published cipher-texts

into the latest attribute version, such that newly

joined users can still decrypt previously published

ciphertexts, if their attributes can satisfy access

policies associated with ciphertexts. This guarantees

the forward security. g

Theorem 3. Our access control scheme can resist the
collusion attack, even when some AAs are
corrupted by the adversary.

Proof. Users may collude and combine their

attributes to decrypt the ciphertext, although they

are not able to decrypt the ciphertext alone. Due

to the random number t and the aid in the secret

key, each component associated with the attribute

in the secret key is distinguishable from each

other, although some AAs may issue the same

attributes. Moreover, the secret key is also

associated with the user’s globally unique identity

uid. Thus, users cannot collude together to gain

illegal access by combining their attributes

together.

However, when some AAs is corrupted by the
adver-sary, the collusion resistance becomes more
complicated. Specifically, the adversary may launch
Attribute Forge Attack, defined as follows. Suppose a
user uid0 possesses an attribute ‘‘xaid0 ’’ from AAaid0 ,
while the adversary does not hold the attribute ‘‘xaid0
’’ from AAaid0 . The adversary attempts to forge
(‘‘clone’’) the attribute ‘‘xaid0 ’’ from the user uid0’s
secret key by colluding with some other AAs.

In our scheme, the item g
u0

uid
tuid;aid aid

 in the secret
key construction helps to resist this attack. When the
adversary corrupts any AAs, he/she can get all the
global secret key GSKuid for all the users in the
system (because each AA has full knowledge on one
of the user’s global secret keys GSKuid). Suppose all
the Kxaid ;uid in the secret key is constructed without

International Journal of Advanced and Innovative Research (2278-7844) / # 108 / Volume 5 Issue 8

 © 2016 IJAIR. All Rights Reserved 108

this item. The adversary can success- fully forge the
attribute ‘‘xaid0 ’’ as

By adding the item gu0 uidtuid;aid_aid , such

attribute forge attack will be eliminated. G Privacy-

Preserving Guarantee: Although the CA holds the

global master key GMK, it does not have any secret

key issued from the AA. Without the knowledge of

gaid , the CA cannot decrypt any ciphertexts in the

system. Our scheme can also prevent the server from

getting the content of the cloud data by using the

proxy-encryption method.

5 PERFORMANCE ANALYSIS

In this section, we analyze the performance of our

scheme by comparing with the Ruj’s DACC scheme

[13] and our previous scheme in the conference

version [14], in terms of storage overhead,

communication cost and computation efficiency. We

conduct the comparison under the same security

level. Let jpj be the element size in the G;GT ;Zp.

Suppose there are nA authorities in the system and

each attribute authority AAaid manages naid

attributes. Let nU and nO be the total number of users

and owners in the system respectively. For a user uid,

let nuid;aidk ¼ jSuid;aidk j denote the number of

attributes that the user uid obtained from AAaidk. Let

‘ be the total number of attributes in the cipher text.

5.1 Storage Overhead

The storage overhead is one of the most significant

issues of the access control scheme in cloud storage

systems. Let na ¼ PnA k¼1 naidk denote the total

number attributes in the system and na;uid ¼ PnA

k¼1 nuid;aidk denote the total number of attributes

the user uid holds from all the AAs in the system. We

compare the storage overhead on each entity in the

system, as shown in Table 2.

TABLE 3

Communication Cost for Attribute Revocation

1) Storage Overhead on Each: AA Each AA needs

store the information of all the attributes in its

domain. Besides, in

[14], each AAaid also needs to store the secret keys

from all the owners,where the storage overhead on

each AA is also linear to the total number of owners

nO in the system. In our scheme, besides the storage

of attributes, each AAaid also needs to store a public

key and a secret key for each user in the system.

Thus, the storage overhead on each AA in our

scheme is also linear to the number of users nU in the

system.

2) Storage Overhead on Each Owner: The public

parameters contribute the main storage overhead on

the owner. Besides the public parameters, in [13],

owners are required to re-encrypt the ciphertexts and

in [14] owners are required to generate the update

information during the revocation, where the owner

should also hold the encryption secret for every

ciphertext in the system. This incurs a heavy storage

overhead on the owner, especially when the number

of ciphertext is large in cloud storage systems.

3) Storage Overhead on Each User: The storage

overheadon each user in our scheme comes from the

secret keys issued by all the AAs. However, in [13],

the storage overhead on each user consists of both the

secret keys issued by all the AAs and the ciphertext

components that associated with the revoked attribute

x, because when theciphertext is re-encrypted, some

of its components related to the revoked attributes

should be sent to each non-revoked user who holds

the revoked attributes. In [14], the user needs to hold

multiple secret keys for multiple data owners, which

means that the storage overhead on each user is also

linear to the number of owners nO in the system.

4) Storage Overhead on Server: The ciphertexts

contribute the main storage overhead on the server

(here we do not consider the encrypted data which

are encrypted by the symmetric content keys).

5.2 Communication Cost

The communication cost of the normal access control

is almost the same. Here, we only compare the

communication cost of attribute revocation, as shown

in Table 3. The communication cost of attribute

revocation in [13] is linear to the number of cipher

text switch contain the revoked attribute. In [14], the

communication overhead is linear to the total

number of attributes nc;aid belongs to the AAaid in all the

ciphertexts. It is not difficult to find that our scheme

incurs much less communication cost during the

attribute revocation.

5.3 Computation Efficiency

We implement our scheme and DACC scheme [13]

on a Linux systemwith an IntelCore 2 DuoCPU at

3.16GHz and 4.00 GB RAM. The code uses the

Pairing-Based Cryptography(PBC) library version

0.5.12 to implement the access control schemes. We

use a symmetric elliptic curve curve, where the base

field size is 512-bit and the embedding degree is 2.

The _-curve has a 160-bit group order, which means

p is a 160-bit length prime. All the simulation results

International Journal of Advanced and Innovative Research (2278-7844) / # 109 / Volume 5 Issue 8

 © 2016 IJAIR. All Rights Reserved 109

are the mean of 20 trials. We compare the

computation efficiency of both encryption and

decryption in two criteria: the number of authorities

and the number of attributes per authority. Fig. 3a

describes the comparison of encryption time versus

the number of authorities, where the involved number

of attributes per authority is set to be 10. Fig. 3c gives

the encryption time comparison versus the number of

attributes per authority, where the involved number

of authority is set to be 10. It is easy to find that our

scheme incurs less encryption time than DACC

scheme in [13]. Fig. 3b shows the comparison of

decryption time versus the number of authorities,

where the number of attributes the user holds from

each authority is set to be 10. Suppose the user has

the same number of attributes from each authority,

Fig. 3d describes the decryption time comparison

versus the number of attributes the user holds from

each authority. In Fig. 3d, the number of authority for

the user is fixed to be 10. It is not difficult to see that

our scheme incurs less decryption on the user than

DACC scheme in [13]. Fig. 3e describes the time of

cihertext update/reencryption versus the number of

revoked attributes, and our scheme is more efficient

than [13]. The ciphertext update/re-encryption

contributes the main computation overhead of the

attribute revocation. In our conference version [14],

when an attribute is revoked from its corresponding

authority AAaid0 , all the ciphertexts which are

associated with any attributes from AAaid0 should be

updated. In this paper, however, the attribute

revocation method only requires the update of

ciphertexts which areassociated with the revoked

attribute.

 6 RELATED WORK

Ciphertext-Policy Attribute-Based Encryption (CP-

ABE) [2]-[3] is a promising technique that is

designed for access control of

Fig. 3. Comparison of Computation Time. (a) Encryption.

(b) Decryption. (c) Encryption. (d) Decryption. (e) Re-

encryption.

encrypted data. There are two types of CP-ABE

systems: singleauthority CP-ABE [2], [3], [4], [5]

where all attributes are managed by a single

authority, andmulti-authority CP-ABE [6], [7], [8]

where attributes are from different domains and

managed by different authorities. Multi-authority CP-

ABE is more appropriate for the access control of

cloud storage systems, as users may hold attributes

issued by multiple authorities and the data

ownersmay share the data using access policy defined

over attributes from different authorities. However,

due to the attribute revocation problem, these multi-

authority CP-ABE schemes cannot be directly

applied to data access control for such multi-authority

cloud storage systems.

To achieve revocation on attribute level, some

reencryption- based attribute revocation schemes [9],

[11] are proposed by relying on a trusted server. We

know that the cloud server cannot be fully trusted by

data owners, thus traditional attribute revocation

methods are no longer suitable for cloud storage

systems. Ruj, Nayak and Ivan proposed a DACC

scheme [13],

where an attribute revocation method is presented for

the Lewko and Waters’ decentralized ABE scheme

[8]. Their attribute revocationmethod does not require

a fully trusted server. But, it incurs a heavy

communication cost since itrequires the data owner to

transmit a new ciphertext component to every non-

revoked user.

7 CONCLUSION

In this paper, we proposed a revocable multi-

authority CPABE scheme that can support efficient

attribute revocation. Then, we constructed an

effective data access control scheme for multi-

authority cloud storage systems. We also proved that

our scheme was provable secure in the random oracle

model. The revocable multi-authority CPABE is a

promising technique, which can be applied in any

remote storage systems and online social networks

etc.

REFERENCES

[1] P. Mell and T. Grance, ‘‘The NIST Definition of Cloud

Computing,’’ National Institute of Standards and

Technology, Gaithersburg, MD, USA, Tech. Rep., 2009.

[2] J. Bethencourt, A. Sahai, and B. Waters, ‘‘Ciphertext-

Policy Attribute-Based Encryption,’’ in Proc. IEEE Symp.

Security and privacy (S&P’07), 2007, pp. 321-334.

[3] B. Waters, ‘‘Ciphertext-Policy Attribute-Based

Encryption: An Expressive, Efficient, and Provably Secure

Realization,’’ in Proc. 4th Int’l Conf. Practice and Theory

in Public Key Cryptography (PKC’11), 2011, pp. 53-70.

[4] V. Goyal, A. Jain,O. Pandey, andA. Sahai, ‘‘Bounded

Ciphertext Policy Attribute Based Encryption,’’ in Proc.

35th Int’l Colloquium on Automata, Languages, and

Programming (ICALP’08), 2008, pp. 579-591.

[5] A.B. Lewko, T. Okamoto, A. Sahai, K. Takashima, and

B.Waters, ‘‘Fully Secure Functional Encryption: Attribute-

Based Encryption and (Hierarchical) Inner Product

Encryption,’’ in Proc. Advances in Cryptology-

EUROCRYPT’10, 2010, pp. 62-91.

[6] M. Chase, ‘‘Multi-Authority Attribute Based

Encryption,’’ in Proc. 4th Theory of Cryptography Conf.

Theory of Cryptography (TCC’07), 2007, pp. 515-534.

International Journal of Advanced and Innovative Research (2278-7844) / # 110 / Volume 5 Issue 8

 © 2016 IJAIR. All Rights Reserved 110

[7] M. Chase and S.S.M. Chow, ‘‘Improving Privacy and

Security in Multi-Authority Attribute-Based Encryption,’’

in Proc. 16th ACM Conf. Computer and Comm. Security

(CCS’09), 2009, pp. 121-130.

[8] A.B. Lewko and B. Waters, ‘‘Decentralizing Attribute-

Based Encryption,’’ in Proc. Advances in Cryptology-

EUROCRYPT’11,2011, pp. 568-588.

International Journal of Advanced and Innovative Research (2278-7844) / # 111 / Volume 5 Issue 8

 © 2016 IJAIR. All Rights Reserved 111

