

Prime – Antimagic Labeling of Some Special Classes Of Graphs

K.Thirugnanasambandam¹, G.Chitra²

¹ P.G and Research Department of Mathematics, Muthurangam Govt. Arts College, Vellore, 632002, India.

kthirugnanasambandam@gmail.com

² Department of Mathematics, D.K.M College for Women, Vellore, 632001, India.

chitraganesan2008@gmail.com

Abstract

An Prime Antimagic Labeling of a finite simple undirected graph with p vertices and q edges is a bijection from the set of vertices to the integers { 1, 2, ..., p } such that for each edge uv, the labels assigned to u and v are relatively prime and the induced edge labeling f (uv) = f (u) + f (v) are all distinct. A Graph is called Prime Antimagic if it admits Prime Antimagic Labeling. In this article we study the new classes of graphs $K_n^c + K_2$, $P_{n(m)}$, SF(n,m) and Fans are Prime Antimagic graph. We also discuss Prime Odd Antimagic labeling of theta graph , fan graph and in the contex of graph operation fusion.

Key Words: Prime Antimagic Labeling, Prime Odd Antimgic labeling, $K_n^c + K_2$, $P_{n_{(m)}}$, SF(n,m), Fans, theta graph and in the contex of graph operation fusion

AMS Subject Classification (2010): 05C78

1. Introduction

All graphs in this paper are finite, simple, undirected and without loops unless otherwise stated. In 1990, Hartsfield and Ringel [3] introduced the concepts called antimagic labeling and antimagic graph. We follow the notation and terminology of [7].

Definition 1.1

For a graph G = (V, E) with p vertices and q edges and without any isolated vertex, an *antimagic vertex labeling* is a bijection f : V \rightarrow { 1, 2, ... p } such that the induced edge sum f* : E $\rightarrow N$ given by f (uv) = f (u) + f (v), u, v \in V is injective. A graph is called *antimagic* if it admits an antimagic labeling.

The notion of a prime labeling was originated by Roger Entringer and was discussed in a paper by Tout [5].

Definition 1.2

A *Prime Labeling* of a graph G is an injective function f : $V \rightarrow \{ 1, 2, ..., p \}$ such that for every pair of adjacent vertices u and v, gcd (f(u), f(v)) = 1. The graph which admits prime labeling is called a prime graph.

We will give brief summary of definitions [1], [2], [4] and [6] which are useful for our present investigation.

Definition 1.3

An SF (n,m) is a graph consisting of a cycle C_n , $n \ge 3$, and n set of m independent vertices where each set joins each of the vertices of C_n .

Definition 1.4

The graph $P_{n(m)} = G(V, E)$ such that $V(G) = \{ v_{ij}, 1 \le i \le m, \text{ and } 1 \le j \le n \}$ $E(G) = \{ v_{ij}v_{i(j+1)} / 1 \le i \le m \text{ and } 1 \le j \le n-1 \} \cup \{ v_{i(n-1)}v_{i+1((n-1))} / 1 \le i \le m-1 \}$

Definition 1.5

International Journal of Advanced and Innovative Research (2278-844)/ Volume 7 Issue 8

A *theta graph* is a block with two non – adjacent vetices of degree 3 and all other vertices of degree 2 is called a theta graph.

Definition 1.6

Let u and v be two distinct vertices of a graph G. A new graph G_1 is constructed by *fusing (identifying)* two vertices u and v by a single vertex x in G_1 such that every edge which has incident with either u or v in G now incident with x in G_1 .

Definition 1.7

Bi-Star is the graph obtained by joining the apex vertices of two copies of $\text{Star}K_{1,n}$.

Definition 1.8

The *friendship graph* F_n is one – point union of n copies of cycle C_3

2. Main Results

Definition 2.1

A **Prime - Antimagic labeling** of a graph G is an bijective function $f : V(G) \rightarrow \{1,2,...|V|\}$ such that every pair of adjacent vertices u and v, g.c.d (f(u), f(v)) = 1 and the induced mapping $f^* : E(G) \rightarrow N$ defined by $f^* (e = uv) =$ $\sum f(u, v)$ where $(u,v) \in E(G)$ is injective and all these edge labelings are distinct.

Theorem 2.2

The graph SF (n, 1) admits a Prime Antimagic labeling

Proof:

Let G denote the graph SF (n, 1).

Let $v_1, v_2, ..., v_n$ be the vertices of the cycle SF(n,1) and v'_j for j = 1,2,...n be the vertices joining the corresponding vertices v_j .

Here
$$|V(G)| = 2n$$
 and $|E(G)| = 2n$.
Define f: $V \rightarrow \{ 1,2,..., |V| \}$ by
 $f(v_j) = 2j - 1$ for $j = 1,2,...n - 1$
 $f(v_j) = 2n$ for $j = n$
 $f(v_j') = 2j$, $j = 1,2,...n - 1$
 $f(v_j') = 2j - 1$ for $j = n$.

Therefore, there exists a bijection $f : V \rightarrow \{ 1,2,... | V | \}$ such that each vertex u and v satisfies gcd(f(u), f(v)) = 1.

The distinct edge labels are determined by the condition $e(v_j v_{j+1}) = f(v_j) + f(v_{j+1}).$

Hence Proved.

Theorem 2.3

 $K_n^c + K_2$ is Prime Antimagic labeling, if $n \le 5$ and n is odd.

Proof:

Let
$$G = K_n^c + K_2$$
.

Let u and w be the vertices of K_2 and $v_1, v_2, ..., v_n$ be the vertices of K_n^c .

Let V (G) = {u,w, $v_i / 1 \le i \le n$ }

 $E(G) = \{uw, uv_i, wv_i / 1 \le i \le n\}.$

Therfore |V(G)| = n + 2 and |E(G)| = 2n + 1. The vertex labelings are defined by $f: V(G) \rightarrow \{1, 2, \dots, n+2\}$

by f(u) = 1, f(w) = n + 2, f(v_i) = i + 1, 1 \le i \le n.

The edge labels f*: E (G) \rightarrow { 3,4,... 2n - 1 } are distinct.

Thus proved.

Theorem 2.4

http://ijairjournal.com

International Journal of Advanced and Innovative Research (2278-844)/ Volume 7 Issue 8

The graph $P_{n_{(m)}}$ is a Prime Antimagic graph for all n, m \geq 2.

Proof:

Let $G = P_{n(m)}$.

Let V (G) = { v_{ij} , $1 \le i \le m$, and $1 \le j \le n$ }

 $E(G) = \{v_{ij}v_{i(j+1)} / 1 \le i \le m \text{ and } 1 \le j \le n-1 \} \cup$

 $\{ v_{i(n-1)}v_{i+1((n-1))} / 1 \le i \le m-1 \}$

Then |V(G)| = mn and |E(G)| = mn - 1.

Define f: V \rightarrow {1, 2...mn } by f (v_{ij}) = n (i - 1) + j,

 $1 \le i \le m$, and $1 \le j \le n$ and the prime condition is

gcd ($f(v_{ij})$, $f(v_{i(j+1)})$) = 1. All the edge labels are distinct.

Hence the theorem follows.

Theorem 2.5

The Bi- Star $B_{n,n}$ admits prime Antimagic Labeling.

Proof:

Consider the two copies of $K_{1,n}$. Let v_1 , v_2 , ... v_n and u_1 , u_2 , ... u_n be the corresponding vertices of each copy of $K_{1,n}$ with apex vertex v and u.

Let $e_i = v v_i$, $e'_i = u u_i$ and e = uv of bistar graph.

Here $|V(B_{n,n})| = 2n + 2$, $|E(B_{n,n})| = 2n + 1$.

Define a prime labeling f: V (G) $\rightarrow \{1, 2, ... |V|\}$ as follows.

Case (i): n is odd	<i>Case</i> (<i>ii</i>): n is even
f(u) = 1	f(u) = 1
f(v) = n	f(v) = 7
$f(u_i) = 2i, 1 \le i \le n$	f(u_i) = 2i - 2 , 1 \leq i
\leq n	

 $f(v_i) = 2i - 1 \neq n \text{ and } 1 \le i \le n \quad f(v_1) = 3$

f(v_n) = 2n + 2 f(v_2) = 5, f(v_3) = 9 and so on.

The induced edge labels are distinct and the theorem follows.

3. Prime – Odd Antimagic labeling

In this section we introduce the another new concept of Prime – odd Antimagic labeling and Prime – odd Antimagic labeling of the theta graph, fusion of the graph..

Definition 3.1

A connected graph G with |V| = p vertices and |E| = q edges is said to be *Prime – odd Antimagic labeling* if there is an bijection f : V(G) \rightarrow {1,3,....2 |V| - 1} such that every pair of adjacent vertices u and v, g.c.d(f (u),f (v)) = 1 and the induced mapping f* : E(G) \rightarrow N defined by f*(e = uv) = $\sum f(u, v)$ where (u,v) $\in E(G)$ is injective and all these edge labelings are distinct.

Theorem 3.2

The Theta graph T_a admits a prime odd antimagic labeling.

Proof:

Let T_a be the theta graph with centre v_4 , $V(T_a) = \{ v_1, v_2, \dots, v_7 \}$ and

E $(T_a) = \{ v_i v_{i+1} / 1 \le i \le 6 \} \cup \{ v_1 v_5 \} \cup \{ v_3 v_7 \}$ Define a label f: V $(T_a) \rightarrow \{ 1,3,...2p - 1 \}$ such that gcd $(f(v_i), f(v_j)) = 1$ and for the vertex $v_1, v_7, v_3 \text{ gcd} (f(v_1), f(v_5)) = 1$ and gcd $(f(v_7), f(v_3)) = 1$ and defined by f $(v_i) = 2i - 1, 1 \le i \le 7$. The edge labels f* (e) = $\sum f(u)$ are distinct. Hence T_a is an prime odd antimagic graph.

Observation 3.3

The friendship graph F_n admits a prime odd antimagic labeling, if $n \leq 3$.

Theorem 3.3

The fusion of any two vertices in the cycle of T_a is an prime odd antimagic graph.

3 ©2018 IJAIR. All Rights Reserved

http://ijairjournal.com

International Journal of Advanced and Innovative Research (2278-844)/ Volume 7 Issue 8

Proof:

Let T_a be the theta graph with centre v_4 , $V(T_a) = \{ v_1, v_2, ..., v_7 \}$ and $E(T_a) = \{ v_i v_{i+1} / 1 \le i \le 6 \} \cup \{ v_1 v_5 \} \cup \{ v_3 v_7 \}.$

Then $|V(T_a)| = 7$ and $|E(T_a)| = 8$.

Let G be a graph obtained by fusion of two vertices $v_i v_{i+1}$ in the cycle of T_a .

Thus |V(G)| = 6 and |E(G)| = 7.

The vertices of a new graph G is denoted by u_1, u_2, u_3, u_4 , u_5, u_6 and u_6 is the centre vertex of G.

Define a label f: V (G) \rightarrow {1, 3, 5, 79, 11} such that

f $(u_i) = 2i - 1$, $i = 1, 2, \dots 6$.

Here v_1v_2 are the fused by a single vertex u_1 .

That is $v_1 = v_3 = u$.

For each vertex gcd $(f(u_i), f(u_j)) = 1$ and each edge

 $e = u_i u_i \in G$, $f^*(e) = \sum f(u)$ are all distinct.

Hence proved.

Theorem 3.4

The graph obtained by identifying any two vertices v_i and v_j where d $(v_i, v_j) \ge 3$ of cycle C_n is an prime odd antimagic labeling.

Proof:

Let C_n be the cycle with vertices v_1 , v_2 , ... v_n and the vertex v_1 fused with v_m where $m \le n/2$.

Denote the resultant graph as G. Here we note that

|V(G)| = n - 1. It is obvious that identifying two vertices of cycle C_n produces connected graph which includes two edge disjoint cycles C_{m-1} and C_{n-m-1} .

To define labeling f: V(G) \rightarrow {1,3,....2 |V| - 1} by

f $(v_i) = 2i - 1$, i = 1,2,..n and all edge labelings are distinct. Hence proved.

3. Conclusion

We have presented the prime antimagic labeling of certain classes of graphs such as $K_n^c + K_2$, $P_{n(m)}$ and SF(n,m). We also discuss Prime Odd Antimagic labeling of theta graph, fan graph and in the contex of graph operation fusion.

References

[1]. Ashokkumar.S and Maragathavalli.S, *Prime Labeling* Of Some Special Graphs, IOSR- Journal Of Mathematics, Vol.11 (Jan – Feb, 2015), 01 – 05.

[2]. Ganesan .V and Dr.K.Balamurugan, *On Prime Labeling of Theta Graph*, International Journal Of Current Research and modern Education, Volume I, 42 – 48.

[3]. Harsfield.N and Ringel.G, *Pearls in Graph Theory*, Academic Press, Boston, 1990.

 [4]. Meenakshi Sundaram and Nagarajan.A , Prime Labeling Of Some Special Class Of Graphs, Journal Of Ultra Scientist, Vol.28(4) A, 208 – 212 (2016).

[5].Tout,A.,Dabboucy,A.N and Howalla.K(1982), *Prime Labelling Of Graphs*, Nat.Acad Sci. letters, 11 ,PP.365-368.

[6].Vaidya .K and K.K.Kanani, *Prime Labeling for Some Cycle Related Graphs*, Journal Of Mathematics Research, Vol. 2(May 2010), 93 – 105.

[7].West.D.B, *Introduction to Graph Theory*, Prentice Hall of India,NewDelhi,2005.

4 ©2018 IJAIR. All Rights Reserved

http://ijairjournal.com