
 Efficient Multicast Authentication
1B.Sangeetha, 2S.Puvaneswari, 3S.Hemalatha

1,2,3 AP/CSE

Kings College of Engineering, Punalkulam

Bsangeetha85@gmail.com

Abstract: Conventional block-based multicast authentication

protocols overlook the heterogeneity of receivers in mobile

computing by letting the sender choose the block size, divide a

multicast stream into blocks, associate each block with a

signature, and spread the effect of the signature across all the

packets in the block through hash or coding algorithms. They

suffer from some drawbacks. First, they require that the entire

block with its signature be collected before authenticating every

packet in the block. This authentication latency can lead to the

jitter effect on real-time applications at receivers. Second, the

block-based approach is vulnerable to packet loss in mobile

computing in the sense that the loss of some packets makes the

other packets unable to be authenticated, especially when the

block signature is lost. Third, they are also vulnerable to DoS

attacks caused by the injection of forged packets. In this article

we propose a novel multicast authentication protocol based on

an efficient cryptographic primitive called a batch signature.

Our protocol supports the verification of the authenticity of any

number of packets simultaneously and avoids the shortcomings

of the block-based approach.

INTRODUCTION

Multicast is an efficient method to deliver multimedia content

from a sender to a group of receivers, and is gaining popular

applications such as real-time stock quotes or video on

demand. Authentication is one of the critical topics in

securing multicast in mobile computing, an open

environment attractive to malicious attacks. Basically,

multicast authentication may provide the following services:

Data integrity: Each receiver should be able to ensure that

received packets have not been modified during

transmissions.

Data origin authentication: Each receiver should be able to

ensure that each received packet comes from the real sender

as it claims.

Non-repudiation: The sender of a packet should not be able

to deny sending the packet to receivers in case there is a

dispute between the sender and receivers. Designing a

multicast authentication protocol needs to consider the

following requirements:

Efficiency: While the sender of multimedia content is usually

a powerful server, receivers can have different capabilities

and resources. Receiver heterogeneity requires that the

multicast authentication protocol be implementable on not

only powerful computers but also resource-constrained

mobile handsets.

Resilience to packet loss: Packets may be lost during

wireless transmission. The impact of packet loss on the

authenticity of the received packets should be as small as

possible.

Resilience to denial of service (DoS) attacks: Forged

packets injected into a multicast stream increase the workload

of receivers and cause the drop of authentic packets, leading

to DoS. A certain level of resilience to DoS attacks should be

provided.

In order to meet the aforementioned three requirements, we

can use asymmetric key techniques. In an ideal case, each

packet includes a signature generated with the sender’s

private key, and each receiver verifies the signature with the

sender’s public key. As it is well known that existing digital

signature algorithms are computationally expensive, the ideal

approach raises a serious challenge to receivers’

computational capabilities.

Conventional multicast authentication protocols use a block-

based approach to reduce the number of signature verification

operations at each receiver. In particular, the sender divides a

multicast stream into blocks, associates each block with a

signature, and spreads the effect of the signature across all

the packets in the block through some data structures. One

data structure is a hash chain. In each block, the hash of each

packet is embedded into several other packets in a

deterministic or probabilistic way. The hashes form chains

linking each packet to the block signature. Each receiver

verifies the block signature and authenticates all the packets

through hash chains. A simple example is illustrated ,given a

block of n packets Pi, i = 1, 2, …, n. The hash of Pi is

included in Pi+1 for i = 1, 2, …, n – 1. For the hash of the

last packet, H(Pn), a signature S is computed. After receiving

the signature S, each receiver can authenticate all the packets

one by one in this block by tracing back through the hash

chain. In order to tolerate a certain level of packet loss, each

packet can be linked to multiple other packets and further to

the block signature. Coding is another method to disperse the

effect of a signature. In Fig. 2, for example, a block consists

of n packets Pi, i = 1, 2, …, n. For each payload Mi, a hash

H(Mi) is computed. A signature S is generated for the

concatenation of all the hashes. Then the signature and all the

hashes are input into an (m, n)-coding algorithm, which

outputs n pieces Si, i = 1, 2, …, n. Each packet in the block is

attached to one piece before being sent out. Each receiver can

recover the n hashes and the signature S as long as it receives

at least m pieces. The block-based approach can achieve

computational efficiency at receivers because the

computation requirement is reduced to one signature

verification plus some hash or decoding operations for a

block of packets. However, they suffer from some

drawbacks.

First, each receiver has to collect an entire block with a block

signature before authenticating every packet in the block. A

larger block size achieves higher computational efficiency,

but incurs longer latency for authentication. This

authentication latency can lead to the jitter effect on real-time

applications at the receiver when some time-critical packets

have to be delayed for block signature verification. In

addition, the block size is chosen by the sender, which

overlooks the heterogeneity of the receivers in mobile

communications, where mobile devices with constrained

International Journal of Advanced and Innovative Research (2278-7844) / # 32 / Volume 6 issue 4

 © 2017 IJAIR. All Rights Reserved 32

mailto:Bsangeetha85@gmail.com

memory resources may not be able to allocate enough

memory space to buffer a block of packets.

Second, the relationship between the packets of each block

due to the hashes or coding makes the multimedia stream

vulnerable to packet loss in the sense that the loss of some

packets makes the other packets unable to be authenticated.

In an extreme case, the loss of the block signature makes the

whole block of packets unable to be authenticated.

Third, previous protocols are vulnerable to DoS attacks. An

attacker can inject a large number of forged packets to disrupt

the authentication process and cost extra computation

overhead at receivers.

In this paper, we propose a novel multicast authentication

protocol based on an efficient asymmetric cryptographic

primitive called a batch signature, which supports the

authentication of any number of packets simultaneously. Our

design can provide data integrity, origin authentication, and

non-repudiation like previous asymmetric key-based

protocols. In addition, we make the following contributions:

By using batch signatures, the authentication latency is

eliminated in the sense that each receiver can verify the

authenticity of any number of packets in its buffer

simultaneously whenever high-layer applications require.

This is a significant improvement in the quality of real-time

applications compared to conventional block-based protocols.

It is perfectly resilient to packet loss in the sense that no

matter how many packets are lost, the rest can also be

verified by receivers. Most conventional protocols cannot

totally solve the packet loss problem.

It provides strong resilience to DoS attacks by using packet

filtering, while most conventional protocols are vulnerable to

DoS.

Next we introduce the architecture of the proposal, including

the idea of batch signature based on RSA and a packet

filtering technique based on a Merkle tree. After performance

evaluation, we conclude this article.

SYSTEM ARCHITECTURE

Our target is to authenticate multicast streams from a sender

to multiple receivers. The sender is a powerful multicast

server, while each receiver can be a less powerful device with

resource constraints. We consider a multicast authentication

protocol providing data integrity, origin authentication, and

non-repudiation. Therefore, we use asymmetric key

techniques. In view of the problems regarding the sender-

favored block-based approach, we conceive a receiver-

oriented approach by taking into account the heterogeneity of

the receivers in mobile communications. As mobile devices

have different computation and communication capabilities,

some could be powerful mobile vehicles or portable laptops,

while others could be PDAs or handsets with constrained

memory resource and low-end CPUs. This poses a demand

on the capability to authenticate any number of packets

simultaneously on request by the high-layer applications at

each receiver. Our design can achieve this goal by using

batch signatures, while the block-based approach in previous

protocols cannot fulfil this requirement. In a batch signature

scheme, each packet is signed by the sender with a signature.

When a receiver collects n packets pi = {mi, si}, i = 1,…, n,

where mi is the data payload, si is the corresponding

signature, and n can be any positive integer, it inputs them

into a verification algorithm BatchVerify(p1, p2, …, pn) Î

{True, False}. If the output is True, the n packets are

authentic; otherwise, they are not. To support authenticity

and efficiency, BatchVerify() should have the following

properties:

• Given a batch of packets that have been signed by the

server, BatchVerify() outputs True.

• Given a batch of packets including some packets that have

never been signed by the sender and are potentially forged by

an attacker, the probability that BatchVerify() outputs True is

very low.

• The computation complexity of BatchVerify() is much

lower than that of verifying all the packets one by one and

increases gradually when batch size n is increased. By

BatchVerify(), our protocol can achieve computational

efficiency comparable to conventional block-based protocols

in the sense that a batch of packets can be authenticated

simultaneously. In addition, the authentication latency in

conventional blocked-based protocols is eliminated. Each

receiver can verify the Authenticity of all the received

packets in its buffer whenever high-layer applications

require. This is a significant improvement in the quality of

real-time applications. Multicast channels can be lossy,

where packets are lost according to different loss models,

such as random or burst loss. The traditional block-based

approach is vulnerable to packet loss due to the correlation

between packets caused by hash chains and coding

algorithms. The batch-based approach discussed here

removes the correlation between packets, which makes our

design perfectly resilient to packet loss. No matter how many

packets are lost, the rest can still be verified. A potential

threat to batch signature is DoS. An attacker may inject

forged packets into a batch of packets to disrupt the batch

signature verification. A naive approach to defeat the DoS

attack is to divide the batch into multiple smaller batches and

perform a batch verification over each smaller batch; this

divide-and-conquer approach can be recursively carried out

for each smaller batch, which means more signature

verifications at each receiver. In the worst case, the attacker

can inject forged packets at very high frequency and expect

each receiver to stop the batch operation and recover the

basic per-packet signature verification. In order to deal with

DoS attacks, we need a method to filter out forged packets. In

particular, the sender attaches a mark to each packet, which is

unique to the packet and cannot be spoofed. At each receiver,

the multicast stream is classified into disjoint sets based on

marks. Each set comes from either the real sender or the

attacker. The mark design ensures that a packet from the real

sender never falls into any set of packets from the attacker,

and vice versa. Next, each receiver only needs to perform

BatchVerify() over each set. If the result is True, the set of

packets is authentic. If not, the set of packets is from the

attacker, and the receiver simply drops them and does not

need to divide the set into smaller subsets for further batch

verifications. Therefore, strong resilience to DoS due to

forged packets can be provided. The architecture of our

protocol is depicted in Fig. 3. For each message mi, the

sender computes a signature si, then computes a mark wi for

International Journal of Advanced and Innovative Research (2278-7844) / # 33 / Volume 6 issue 4

 © 2017 IJAIR. All Rights Reserved 33

{mi, si}. Therefore, each packet is pi = {mi, si, wi}. These

packets are sent over a lossy and hostile channel to multiple

receivers through multicast routing. Each receiver gets a

stream of packets including both authentic and potentially

forged ones. The receiver classifies received packets into

disjoint sets based on marks. Each set consists of packets pi =

{mi, si} where wi is no longer needed. Then the receiver

performs BatchVerify() over each set. If the verification over

one set succeeds, the set of packets is authentic. Otherwise,

the set of packets is forged and can be dropped without

further verification on each packet.

BATCH SIGNATURE

We can construct batch signature based on RSA, BLS, and

DSA. In addition, we developed two novel batch signature

schemes based on BLS and DSA. For the sake of simplicity,

we use the well-known RSA as an example to illustrate the

idea of batch signature. In RSA, a sender chooses two large

random primes P and Q to get N = PQ, and calculates two

exponents e, d Î ZN*, where ZN* = {1, 2, …,N – 1} such that

ed = 1 mode f(N), where Euler’s totient function f(N) = (P –

1)(Q – 1).The sender publishes (e, N) as its public key and

keeps d secret as its private key. A signature of a message m

is generated as s= hd mod N, where h = h(m) and h() is a

collision resistant hash function. The sender sends {m, s} to

each receiver that verifies the authenticity of m by checking

se = h(m) mod N, since se mod N = h ed mod N = h1 mod

f(N) mod N =h mod N if the packet is authentic.

To accelerate the authentication of multiple signatures, the

batch verification of RSA can be used. Given n packets {mi,

si}, i = 1, …, n, where mi is the data payload and s i is the

corresponding signature, the receiver can first calculate hi =

h(mi) and then perform the verification of (Pni =1 si)e = Pni

=1 hi mod N. If all n packets are truly from the sender, the

equation holds because Before the batch verification, each

receiver must ensure that all the messages are distinct.

Otherwise, the batch RSA is vulnerable to packet forgery.

This is easy to implement because sequence numbers are

widely used in many network protocols and can ensure all the

messages are distinct. An attacker may attempt to inject

forged packets and expect them to pass the batch verification.

However, the attacker can hardly succeed because he does

not know the sender’s private key. It has been shown that

when all the messages are distinct, the batch RSA is resistant

to packet forgery as long as the underlying RSA is secure.

The attacker may not inject forged packets but manipulate

authentic packets to produce invalid signatures. For example,

given two packets {mi, si} and {mj, sj} for i ¹ j, the attacker

can modify them into {mi, sil} and {mj, sj/l}. The modified

packets can still pass the batch verification, but the signature

of each packet is not correct. However, the attacker can do

this only when he gets {mi, si}and {mj,sj}, which means the

message mi and mj have been correctly signed by the sender.

Therefore, this attack is of no harm to the receiver.

PACKET FILTERING

In our design, a Merkle tree is used to generate marks. The

sender constructs a binary tree for 8 packets. Each leaf is a

hash of one packet. Each internal node is the hash value for

both its left and right children. For each packet, a mark is

constructed as the set of siblings of the nodes along the path

from the packet to the root.

Example: The mark of the packet P3 is {H4, H1,2, H5,8} and

the root can be recovered as H1,8=H((H1,2, (H(P3),H4)),

H5,8).

Constructing a Merkle tree is very efficient because only

hash operation is performed. Meanwhile, the one-way

property of hash operation ensures that given the root of a

Merkle tree, it is infeasible to find a packet, which is not in

the set associated with the Merkle tree and from which there

is a path to the root. This guarantees that forged packets

cannot fall into the set of authentic packets. When the sender

has a set of packets for multicast, it generates a Merkle tree

for the set and attaches a mark to each packet. The root can

be recovered based on each packet and its mark. Each

receiver can find whether two packets belong to the same set

by checking whether they lead to the same root value.

Therefore, the recovered roots help classify received packets

into disjoint sets. Once a set is authentic, the corresponding

root can be used to authenticate the rest of the packets under

the same Merkle tree without batch-verifying them, which

saves computation overhead at each receiver.

PERFORMANCE EVALUATION

In this section we compare our protocol with the block-based

approach.

AUTHENTICATION LATENCY

The block-based approach requires each receiver to collect an

entire block before authenticating every packet in the block.

A larger block size achieves higher computation efficiency,

but also incurs longer authentication latency. Given a block

size is n, before starting to authenticate each packet in one

block, each receiver has to buffer at least n packets when

hash chains are used and m packets when (m, n)-coding is

used. Our design does not have authentication latency.

Because there is no relationship among packets and no limit

on the number of packets in batch verification, each receiver

can perform the batch verification over its buffered packets

whenever higher-layer applications require. This can greatly

increase the quality of service (QoS) performance of

multicast streams.

RESILIENCE TO PACKET LOSS

Block-based protocols introduce correlation between packets

due to the use of hash chains or coding. This correlation

makes the multicast stream vulnerable to packet loss. The

protocols using hash chains have poor resilience to packet

loss. If some packets are lost, other packets may not be

authenticated, and if the signature of a block is lost, the entire

block of packets cannot be authenticated. Protocols using (m,

n)-coding provide a threshold-based resilience to packet loss.

On the contrary, our design is perfectly resilient to packet

loss in the sense that each packet is independently verifiable.

No matter how many packets are lost, the remaining packets

can still be authenticated. This is a significant improvement

over previous work.

DOS RESILIENCE

DoS is a method for an attacker to deplete the resources of a

receiver. Processing forged packets from the attacker always

consumes a certain amount of resources. The block-based

approach has poor resilience to DoS. Because there is no

International Journal of Advanced and Innovative Research (2278-7844) / # 34 / Volume 6 issue 4

 © 2017 IJAIR. All Rights Reserved 34

filtering, each receiver has to recover the relationship among

authentic packets mixed with forged packets, which is very

time- and computation- intensive. In addition, a deadlock can

form at the receiver in the hash-chain approach when the

receiving buffer is exhausted by mixing forged packets and

authentic packets without block signatures. Those authentic

packets are waiting for signatures, but signatures cannot be

received because the receiving buffer is exhausted by forged

packets. By using a Merkle tree in our design, authentic

packets and forged packets are separated into disjoint sets.

Batch verification is carried out over each set. Therefore,

each batch verification can authenticate a set of packets, and

no more is needed. The deadlock experienced by the hash

chain approach can also be eliminated. If an attacker wants to

inject some forged packets into a batch consisting of

authentic packets, he must break the one-way property of a

Merkle tree. However, this attempt fails because given the

root of a Merkle tree; it is infeasible to find out a packet from

which there is a path to the root due to the one-way property

of hash functions. Therefore, by using a Merkle tree, our

design has strong resilience to DoS attacks.

COMPUTATIONAL OVERHEAD

Both the block-based protocols and our design require one

signature verification operation on a block or a batch of n

packets. In addition, the protocols using hash chains also

require n hashes, and those using coding require n hashes and

one decoding operation. Our design requires nlogn hashes,

which is more expensive than using hash chains and less

expensive than using coding. However, the overall

computation overhead of all these protocols at each receiver

is at the same level since hash operation is much more

efficient (on the order of microseconds) than signature

operation (on the order of milliseconds).There are other

protocols that use symmetric key techniques. They are more

computationally efficient because they do not use signatures.

However, they cannot provide non-repudiation, and they also

suffer from security threats such as DoS or time

synchronization attacks. We need to point out that in our

design the sender needs to sign each packet, which costs

more computation overhead than conventional block-based

protocols. In multimedia multicast, however, the sender is

usually a powerful server; thus, per-packet signature

generation can be affordable.

COMMUNICATION OVERHEAD

For n packets, conventional protocols require an overhead of

one signature and O(n) hashes, while our design requires an

overhead of n signatures and O(nlogn) hashes. The increased

overhead is a trade-off for increased security. However, we

have developed more bandwidth efficient batch signature

schemes. When BLS is used the signature length is 171 bits.

A most well-known hash algorithm, SHA-1, generates a hash

value of 160 bits. Therefore, our protocol can also achieve

the same level of communication efficiency as conventional

protocols.

CONCLUSIONS

In this article we propose a novel multicast authentication

protocol based on batch signature by leveraging the

heterogeneity of receivers in mobile computing. Compared to

traditional solutions, our protocol supports the verification of

the authenticity of any number of packets simultaneously

whenever high-layer applications require and thus eliminates

the authentication latency. In addition, our design is perfectly

resilient to packet loss in the sense that no matter how many

packets are lost, the rest can also be verified by the receiver.

Moreover, our design can efficiently defeat DoS attacks by

using packet filtering.

REFERENCES
[1] Y. Zhou and Y. Fang, “BABRA: Batch-Based Multicast

Authentication in Wireless Sensor Networks,” Proc.49th IEEE

GLOBECOM

[2] K. Ren et al., “On Multicast Authentication in Wireless Sensor

Networks,” Proc. WASA ’06

[3] http://wiki.answers.com

[4] http://www.techgig.com

[5] P. Judge and M. Ammar, “Security Issues and Solutions

inMulicast Content Distribution: A Survey,” IEEE Network

Magazine,vol. 17, no. 1, pp. 30-36, Jan./Feb. 2003.

[6]Y. Zhou and Y. Fang, “BABRA: Batch-Based Broadcast

Authentication in Wireless SensorNetworks,” Proc. IEEE

GLOBECOM, Nov. 2006.

International Journal of Advanced and Innovative Research (2278-7844) / # 35 / Volume 6 issue 4

 © 2017 IJAIR. All Rights Reserved 35

http://wiki.answers.com/
http://www.techgig.com/

