
A Survey of Various Algorithms to Achieve Fault

Tolerance in Wireless Sensor Networks
1S.Puvaneswari, 2S.hemalatha, 3B.Sangeetha

1,2,3 Asst. Prof/CSE

Kings College of Engineering

Abstract: We survey various algorithms for tolerating

permanent and transient failures in Wireless Sensor

Networks. These algorithms attempt to provide low-cost

solutions to fault tolerance, graceful performance

degradation, and load shedding in such systems by

exploiting tradeoffs between space and/or time

redundancy, timing accuracy, and quality of service.

Here we describe various algorithms which are used to

achieve fault-tolerant and increase the performance of a

system. The algorithms are dynamic scheduling, off-line

or static scheduling, and scheduling, a technique which

is used the concepts of mathematical optimization to

allocate tasks on the processors and derive fault tolerant

and fault aware feasibility and diskless check pointing

approach.

Keywords: Fault tolerance, Wireless Sensor Networks

1. INTRODUCTION

The correctness of real-time safety-critical systems

depends not only on the results of computations, but

also on the time instants at which these results

become available. Examples of such systems include

fly- and drive-by-wire, industrial process control,

nuclear reactor management, and medical electronics.

Real-time tasks have to be mapped to processors such

that deadlines, response times, and similar

performance requirements are met, a process called

task scheduling. Furthermore, many real-time

systems function in a hostile, unpredictable

environment and have to guarantee functional and

timing correctness even in the presence of hardware

and software faults.

Faults can be classified according to their duration:

Permanent faults remain in existence indefinitely if

no corrective action is taken. These faults can be

caused by catastrophic system failures such as

processor failures, communication medium cutoff,

and so on. Intermittent faults appear, disappear, and

reappear repeatedly. They are difficult to predict, but

their effects are highly correlated. Most intermittent

faults are due to marginal design or manufacturing.

Transient faults appear and disappear quickly, and

are not correlated with each other.

In real-time systems, fault tolerance is typically

provided by physical and/or temporal redundancy.

Physical redundancy in the form of replicated

hardware and software components is used to tolerate

both permanent and transient system failures. To

reduce the overhead associated with replicated

hardware, some approaches treat the set of processors

as a pooled resource. When a processor fails, other

members in the pool provide the functionality of the

failed processor. Though this approach lowers the

hardware overhead needed to tolerate failures, it

typically causes some performance degradation and

non-zero recovery latency. A common recovery

technique is re-executing the failed task. Another is

the primary/backup approach wherein if incorrect

results are provided by the primary version of a task,

the backup (alternate) is executed.

2. DYNAMIC & STATIC SCHEDULING

A mapping of tasks to processors such that all tasks

meet their time constraints is called a feasible

schedule. A schedule is optimal if it minimizes a cost

function defined for the task set. If no cost function is

defined and the only concern is to obtain a feasible

schedule, then scheduling is optimal only if it fails to

meet a task deadline when no other algorithms in its

class can meet it.

A dynamic scheduler makes its scheduling decisions

at run time based on requests for system services.

After the occurrence of a significant event such as a

service request, the algorithm determines which of

the set of ready tasks should be executed next based

on some task priority which is statically or

dynamically assigned.

A static or off-line scheduling algorithm considers the

resource, precedence, and synchronization

requirements of all tasks in the system and attempts

to generate a feasible schedule that is guaranteed to

meet the timing constraints of all tasks. The schedule

is calculated off-line and is fixed for the life of the

system. Typically, a scheduling or dispatch table

identifies the start and finish times of each task, and

tasks are executed on the processor according to this

International Journal of Advanced and Innovative Research (2278-7844) / # 25 / Volume 6 issue 4

 © 2017 IJAIR. All Rights Reserved 25

table. Static table-driven scheduling is applicable to

periodic tasks or to aperiodic (sporadic) tasks that can

be transformed into periodic ones.

3. FAULT TOLERANT DYNAMIC

SCHDULING ALGORITHM

If an aperiodic task Tj’s execution cannot be

guaranteed by a processor in a distributed system, the

task is transferred to a processor estimated to have

sufficient resources and time to complete the task

before its deadline. Tjs transfer can also be based on

bids received from lightly loaded processors and sent

to the processor deemed most likely to execute the

task within the deadline.

A simple fault-tolerant scheduling approach is to

schedule the entire task set, that is, both primaries

and backups. In the fault-tolerant scheduling

approach proposed in, tasks are assigned “levels”

based on their periods as follows. Let all tasks with

period p be assigned level i. Then tasks in level i + 1

have period m ´ p for some positive integer m ³ 2. In

Fig. 1(a), tasks with period 15 ms belong to level 1

and tasks with period 30 ms and 60 ms belong to

levels 2 and 3, respectively.

Fig1.(a) Level assigned based on their periods

First, backups of all level-1 tasks are scheduled. Then

we schedule the maximum number of level-1

primaries that fit in the remaining time, thus ensuring

that a backup is not scheduled earlier that its

corresponding primary. The schedule for level-1

tasks is S1. Two S1 schedules are concatenated to get

a provisional schedule S2, which is then modified by

removing the minimum number of level-1 primaries

such that all level-2 backups are scheduled. If S2 has

enough idle time, level-2 primaries with least

execution times are also scheduled. If any

unscheduled level-2 primary has a lower execution

time than any scheduled level-1 primary in S2, the

level-1 primary with the largest execution time is

dropped and replaced in S2 with the level-2 primary.

Once S2 is constructed, two S2 schedules are

concatenated to get S3, and so on. This algorithm

schedules a primary and a backup or a backup for

each periodic task in the system.

4. IMPRECISE ALGORITHM

Intermediate or partial results from task computations

can be used instead of more precise final results when

a real-time system suffers failures or transient

overloads. Real-time application areas for imprecise

computations include signal processing, machine

vision, and linear control systems. In the milestone

approach, partial results are obtained at different

execution points in a computation and if a deadline is

reached, the last recorded values form the task

output. This method assumes that the precision of the

results increases monotonically with time, that is, the

longer a computation executes the more precise its

results become. Milestones are specified using

programming primitives, thereby allowing system

designers to explicitly save partial results of selected

program variables. The sieve approach is based on

iterative functions where each iteration computes a

closer approximation of the final answer. A well-

known example is the Newton-Raphson method for

finding the roots of a polynomial. If a deadline is

close, such functions can skip one or more iterations

to produce a result within the time limit, and the final

result is not catastrophic to system correctness. The

sieve approach implicitly specifies the imprecise

results that can be obtained. A real-time task can

integrate both the milestone and sieve approaches as

follows. A task Tjs mandatory portion can use the

milestone approach to produce acceptable results,

while its optional portion can use the sieve approach

to improve the results. The execution of depends on

the availability of computing resources and time

constraints.

Imprecise scheduling can handle transient overload in

dynamic real time systems via a queuing theoretic

approach. When the load is normal, the system

computes precise results, that is, both the mandatory

and optional portions of all tasks are executed. An

unexpected external event can generate sporadic and

aperiodic task requests, thereby increasing system

load. In such cases, some tasks generate imprecise

results by executing only their mandatory portions to

ensure timing correctness of the system. For each

task Tj, an on-line algorithm decides its

computational level, that is, the algorithm directs Tj

to produce precise or imprecise results depending on

the current system load. After deciding Tjs

computational level, the system is notified about the

precision of the computation.

5. MIXED CRITICALITY SCHEDULING

ALGORITHM

A mixed criticality real-time system typically

consists of a set of realtime tasks that vary in their

’importance’ in ensuring the correctness of the

International Journal of Advanced and Innovative Research (2278-7844) / # 26 / Volume 6 issue 4

 © 2017 IJAIR. All Rights Reserved 26

system, e.g., the successful execution of some tasks

may be more important than the others. In general,

we can classify the tasks as critical or non-critical,

based on the consequences of deadline misses; a

deadline miss on a critical task can cause catastrophic

consequences, while a deadline miss on a non-critical

task can cause only a minor degradation of the

service provided by the system. Integrating mixed

criticality tasks on the same platform can be

beneficial in various ways, particularly in reducing

cost and energy consumption.

The main advantages of our approach are:

1) Efficient handling of task criticalities using

feasibility windows.

2) Improved processor utilization and hence cost

reduction through optimization.

3) Fault tolerance strategies covering multiple fault

types.

4) Graceful degradation of the system under faults.

5) Supports the development of certifiable fault-

tolerant mixed criticality systems.

There are two types of feasibility windows:

1) Fault Tolerant (FT) feasibility windows for critical

tasks

2) Fault Aware (FA) feasibility windows for non-

critical tasks

A Fault Tolerant Feasibility Window (FTW) is a

temporal window in which a critical task has to

complete its execution, such that it can feasibly re-

execute (i.e., before its original deadline) upon an

error. A Fault Aware Feasibility Window (FAW) is a

temporal window allocated to non-critical tasks,in

order to control their interference with the critical

ones, i.e., the execution of a non-critical task may not

jeopardize the fault tolerant execution of any critical

one.

Let us consider 2 tasks A and B, where A is a non-

critical task and B is a critical task. Let the time

period and execution time of A be 3 and 2

respectively and that of B be 6 and 2. Let us assume

that the maximum number of re-executions required

by B is 1.

a) Fault Tolerant Feasibility Window Derivation:

The latest time at which the alternate of task B should

start executing to enable one feasible execution is

given by its deadline minus the worst case execution

time of the alternate. Since, according to our

assumption, the WCET of the alternate is no greater

than the WCET of the primary, the alternate of task B

must start executing at time t = 6-2 = 4 to guarantee

its successful execution. Hence the FT feasibility

window of the primary of B is given by the interval,

(0; 4] and that of its alternate is given by the interval

(4; 6] as shown by the figure.

b) Fault Aware Feasibility Window Derivation:

To derive the FA feasibility window for task A, we

first schedule the primary of b to execute as late as

possible and schedule A in the remaining slack. The

figure shows the FA deadlines of task A. Hence the

FA-feasibility window of task A is (0; 2] for its first

job and (3; 6] for its second job. In some cases, it

might not be possible to derive FA feasibility

windows for the non-critical tasks. In these cases, the

non-critical tasks are assigned with their original

feasibility windows, given by their original release

times and deadlines, and while deriving task

priorities, they are assigned a background priority so

that they do not influence the critical task executions.

6. DISKLESS CHECKPOINTING APPROACH

Error recovery via checkpointing can be done in disk

based or diskless manners. In the disk based

approach, checkpoints are stored and read-back from

a safe and a non volatile disk which incurs a great

timing overhead to the system. But in diskless

approach, the need of disks is eliminated and instead

of such low speed storage devices, fast speed

processors memories are used to store and read back

checkpoints. In this method, check points and states

of a processors is stored in the memory of other

processors. When a failure occurs, the faulty

processor can be recovered by restoring its

checkpoints stored in the memory of a healthy

processor.

International Journal of Advanced and Innovative Research (2278-7844) / # 27 / Volume 6 issue 4

 © 2017 IJAIR. All Rights Reserved 27

Since disks are known as low speed devices using

them for storing and reading back checkpoints would

increase the total system runtime. On the other hand

as diskless approaches uses fast memories, compared

to disk based approach they would have a great

impact on system performance. Some fault tolerant

schedulers employs diskless checkpointing scheme to

increase system performance. This technique

eliminates the need of low speed hard disks for

saving checkpoints which eventually leads to reduce

the time takes to store checkpoints as well as reduces

the interval of saving checkpoints. It is also

implementable in multiprocessor systems which use

processor’s memory to store checkpoints.

There are many methods for diskless checkpointing

technique. Neighbor based and coding based are two

of the most famous methods. In neighbor based

method, the checkpoints of the application processor

is stored in the memory of the checkpointing

processor. It cannot tolerate coincident failure of both

procesors neither. Memory consumption is one of the

most significant drawbacks in neighbor based

approaches.

In the coding based m out of an existing processor

are used as checkpointing processor to code and store

checkpoints of the application processors. Therefore

the check points of the faulty processors can be

decoded and calculated again by using checkpointing

and application processors. Coding based methods

have two steps: each application checkpoints are

coded and stored in the memory of the checkpointing

processor which solely codes, stores and decodes

checkpoints.

Parity technique requires only one dedicated

checkpointing processor to store checkpoints of all

application processors. The jth byte of the

checkpointing processor is the result of taking XOR

from jth byte of checkpoints of all application

processors. When a processor fails, the checkpointing

processor recovers the faulty processor by using its

coded checkpoint and the checkpoint of other healthy

processors. This technique reduces the size of

checkpoint, but to recover faulty processor.

Sima and Nasser proposes a method is a combination

of neighbor based and coding based approaches

which stores checkpoints in the memory of other

processors and therefore the need of hard disks for

storing checkpoints is eliminated. It is supposed there

are n processors in the system and each processor can

have one or more tasks. The proposed method groups

processors. The number of groups is equal to the

number of simultaneous faults should be tolerate. At

first, each processor calculates its checkpoint and

stores it in its dedicated memory. To tolerate K

simultaneous faults after grouping processors into K

distinct groups, An XOR is taken from the first tasks

of processors of a given group and the result is stored

in the memory of the first and second processors of

the next group. This process is repeated for all

corresponding tasks in all processors of all groups.

Fig.3 Coding and storing checkpoints to recover

multiple failures.

In each group one faulty processor is recoverable.

The recovery process is as follows: whenever a

processor fails, a message is sent to the first

checkpointing processor in the next group. If the

checkpointing processor is healthy, the recovery

process starts. Otherwise the message is sent to the

second checkpointing processor. The checkpointing

processor using its coded checkpoints and the

received checkpoints decodes and recovers the

checkpoints of the faulty processor and sends it back

to the previous group to recover the faulty processor.

The recovered processor recalculates and stores

checkpoints of its tasks to be used for other

processors failure in the future.

7. CONCLUSION

Error recovery is one of the most important parts of

fault tolerance which leads to increase systems

dependability. In this paper we describes five

algorithms which will be used in various application

depends on the situation. For future work it is

suggested to consider the cost of performing

scheduling and taking and saving checkpoints.

REFERENCES
[1] Nagarajan and John P.Hayes, “ Task Scheduling

algorithms for fault tolerance in real time embedded

system”

[2] Abhilash Thekkilakattil, Radu Dobrin and Sasikumar

Punnekkat ,“

Mixed Criticality Scheduling in Fault-

Tolerant distributed real time systems”, IEEE 2014.

 [3] Sima and Nasser,”Diskless Checkpointing approach for

failure recovery in multiprocessor safety critical embedded

system”, Iranian Conference on Electrical

Engineering(ICEE 2015), Pg.No-688

International Journal of Advanced and Innovative Research (2278-7844) / # 28 / Volume 6 issue 4

 © 2017 IJAIR. All Rights Reserved 28

