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Abstract: We survey various algorithms for tolerating 

permanent and transient failures in Wireless Sensor 

Networks. These algorithms attempt to provide low-cost 

solutions to fault tolerance, graceful performance 

degradation, and load shedding in such systems by 

exploiting tradeoffs between space and/or time 

redundancy, timing accuracy, and quality of service. 

Here we describe various algorithms which are used to 

achieve fault-tolerant and increase the performance of a 

system. The algorithms are dynamic scheduling, off-line 

or static scheduling, and scheduling, a technique which 

is used the concepts of mathematical optimization to 

allocate tasks on the processors and derive fault tolerant 

and fault aware feasibility and diskless check pointing 

approach. 
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1. INTRODUCTION 

The correctness of real-time safety-critical systems 

depends not only on the results of computations, but 

also on the time instants at which these results 

become available. Examples of such systems include 

fly- and drive-by-wire, industrial process control, 

nuclear reactor management, and medical electronics. 

Real-time tasks have to be mapped to processors such 

that deadlines, response times, and similar 

performance requirements are met, a process called 

task scheduling. Furthermore, many real-time 

systems function in a hostile, unpredictable 

environment and have to guarantee functional and 

timing correctness even in the presence of hardware 

and software faults. 

 

Faults can be classified according to their duration: 

Permanent faults remain in existence indefinitely if 

no corrective action is taken. These faults can be 

caused by catastrophic system failures such as 

processor failures, communication medium cutoff, 

and so on. Intermittent faults appear, disappear, and 

reappear repeatedly. They are difficult to predict, but 

their effects are highly correlated. Most intermittent 

faults are due to marginal design or manufacturing. 

Transient faults appear and disappear quickly, and 

are not correlated with each other.  

 

In real-time systems, fault tolerance is typically 

provided by physical and/or temporal redundancy. 

Physical redundancy in the form of replicated 

hardware and software components is used to tolerate 

both permanent and transient system failures. To 

reduce the overhead associated with replicated 

hardware, some approaches treat the set of processors 

as a pooled resource. When a processor fails, other 

members in the pool provide the functionality of the 

failed processor. Though this approach lowers the 

hardware overhead needed to tolerate failures, it 

typically causes some performance degradation and 

non-zero recovery latency. A common recovery 

technique is re-executing the failed task. Another is 

the primary/backup approach wherein if incorrect 

results are provided by the primary version of a task, 

the backup (alternate) is executed. 

 

2.  DYNAMIC & STATIC SCHEDULING 

A mapping of tasks to processors such that all tasks 

meet their time constraints is called a feasible 

schedule. A schedule is optimal if it minimizes a cost 

function defined for the task set. If no cost function is 

defined and the only concern is to obtain a feasible 

schedule, then scheduling is optimal only if it fails to 

meet a task deadline when no other algorithms in its 

class can meet it. 

 

A dynamic scheduler makes its scheduling decisions 

at run time based on requests for system services. 

After the occurrence of a significant event such as a 

service request, the algorithm determines which of 

the set of ready tasks should be executed next based 

on some task priority which is statically or 

dynamically assigned. 

 

A static or off-line scheduling algorithm considers the 

resource, precedence, and synchronization 

requirements of all tasks in the system and attempts 

to generate a feasible schedule that is guaranteed to 

meet the timing constraints of all tasks. The schedule 

is calculated off-line and is fixed for the life of the 

system. Typically, a scheduling or dispatch table 

identifies the start and finish times of each task, and 

tasks are executed on the processor according to this 
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table. Static table-driven scheduling is applicable to 

periodic tasks or to aperiodic (sporadic) tasks that can 

be transformed into periodic ones. 

 

3. FAULT TOLERANT DYNAMIC 

SCHDULING ALGORITHM 

If an aperiodic task Tj’s execution cannot be 

guaranteed by a processor in a distributed system, the 

task is transferred to a processor estimated to have 

sufficient resources and time to complete the task 

before its deadline. Tjs transfer can also be based on 

bids received from lightly loaded processors and sent 

to the processor deemed most likely to execute the 

task within the deadline.  

 

A simple fault-tolerant scheduling approach is to 

schedule the entire task set, that is, both primaries 

and backups. In the fault-tolerant scheduling 

approach proposed in, tasks are assigned “levels” 

based on their periods as follows. Let all tasks with 

period p be assigned level i. Then tasks in level i + 1 

have period m ´ p for some positive integer m ³ 2. In 

Fig. 1(a), tasks with period 15 ms belong to level 1 

and tasks with period 30 ms and 60 ms belong to 

levels 2 and 3, respectively. 

 
Fig1.(a) Level assigned based on their periods 

 

First, backups of all level-1 tasks are scheduled. Then 

we schedule the maximum number of level-1 

primaries that fit in the remaining time, thus ensuring 

that a backup is not scheduled earlier that its 

corresponding primary. The schedule for level-1 

tasks is S1. Two S1 schedules are concatenated to get 

a provisional schedule S2, which is then modified by 

removing the minimum number of level-1 primaries 

such that all level-2 backups are scheduled. If S2 has 

enough idle time, level-2 primaries with least 

execution times are also scheduled. If any 

unscheduled level-2 primary has a lower execution 

time than any scheduled level-1 primary in S2, the 

level-1 primary with the largest execution time is 

dropped and replaced in S2 with the level-2 primary. 

Once S2 is constructed, two S2 schedules are 

concatenated to get S3, and so on. This algorithm 

schedules a primary and a backup or a backup for 

each periodic task in the system. 

4. IMPRECISE ALGORITHM 

Intermediate or partial results from task computations 

can be used instead of more precise final results when 

a real-time system suffers failures or transient 

overloads. Real-time application areas for imprecise 

computations include signal processing, machine 

vision, and linear control systems. In the milestone 

approach, partial results are obtained at different 

execution points in a computation and if a deadline is 

reached, the last recorded values form the task 

output. This method assumes that the precision of the 

results increases monotonically with time, that is, the 

longer a computation executes the more precise its 

results become. Milestones are specified using 

programming primitives, thereby allowing system 

designers to explicitly save partial results of selected 

program variables. The sieve approach is based on 

iterative functions where each iteration computes a 

closer approximation of the final answer. A well-

known example is the Newton-Raphson method for 

finding the roots of a polynomial. If a deadline is 

close, such functions can skip one or more iterations 

to produce a result within the time limit, and the final 

result is not catastrophic to system correctness. The 

sieve approach implicitly specifies the imprecise 

results that can be obtained. A real-time task can 

integrate both the milestone and sieve approaches as 

follows. A task Tjs mandatory portion can use the 

milestone approach to produce acceptable results, 

while its optional portion can use the sieve approach 

to improve the results. The execution of depends on 

the availability of computing resources and time 

constraints. 

 

Imprecise scheduling can handle transient overload in 

dynamic real time systems via a queuing theoretic 

approach. When the load is normal, the system 

computes precise results, that is, both the mandatory 

and optional portions of all tasks are executed. An 

unexpected external event can generate sporadic and 

aperiodic task requests, thereby increasing system 

load. In such cases, some tasks generate imprecise 

results by executing only their mandatory portions to 

ensure timing correctness of the system. For each 

task Tj, an on-line algorithm decides its 

computational level, that is, the algorithm directs Tj 

to produce precise or imprecise results depending on 

the current system load. After deciding Tjs 

computational level, the system is notified about the 

precision of the computation. 

 

5. MIXED CRITICALITY SCHEDULING 

ALGORITHM 

A mixed criticality real-time system typically 

consists of a set of realtime tasks that vary in their 

’importance’ in ensuring the correctness of the 
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system, e.g., the successful execution of some tasks 

may be more important than the others. In general, 

we can classify the tasks as critical or non-critical, 

based on the consequences of deadline misses; a 

deadline miss on a critical task can cause catastrophic 

consequences, while a deadline miss on a non-critical 

task can cause only a minor degradation of the 

service provided by the system. Integrating mixed 

criticality tasks on the same platform can be 

beneficial in various ways, particularly in reducing 

cost and energy consumption. 

 

The main advantages of our approach are: 

1) Efficient handling of task criticalities using 

feasibility windows. 

2) Improved processor utilization and hence cost 

reduction through optimization. 

3) Fault tolerance strategies covering multiple fault 

types. 

4) Graceful degradation of the system under faults. 

5) Supports the development of certifiable fault-

tolerant mixed criticality systems. 

 

There are two types of feasibility windows: 

1) Fault Tolerant (FT) feasibility windows for critical 

tasks 

2) Fault Aware (FA) feasibility windows for non-

critical tasks 

 

A Fault Tolerant Feasibility Window (FTW) is a 

temporal window in which a critical task has to 

complete its execution, such that it can feasibly re-

execute (i.e., before its original deadline) upon an 

error. A Fault Aware Feasibility Window (FAW) is a 

temporal window allocated to non-critical tasks,in 

order to control their interference with the critical 

ones, i.e., the execution of a non-critical task may not 

jeopardize the fault tolerant execution of any critical 

one.  

 

Let us consider 2 tasks A and B, where A is a non-

critical task and B is a critical task. Let the time 

period and execution time of A be 3 and 2 

respectively and that of B be 6 and 2. Let us assume 

that the maximum number of re-executions required 

by B is 1. 

 
a) Fault Tolerant Feasibility Window Derivation:  

The latest time at which the alternate of task B should 

start executing to enable one feasible execution is 

given by its deadline minus the worst case execution 

time of the alternate. Since, according to our 

assumption, the WCET of the alternate is no greater 

than the WCET of the primary, the alternate of task B 

must start executing at time t = 6-2 = 4 to guarantee 

its successful execution. Hence the FT feasibility 

window of the primary of B is given by the interval, 

(0; 4] and that of its alternate is given by the interval 

(4; 6] as shown by the figure. 

b) Fault Aware Feasibility Window Derivation: 

To derive the FA feasibility window for task A, we 

first schedule the primary of b to execute as late as 

possible and schedule A in the remaining slack. The 

figure shows the FA deadlines of task A. Hence the 

FA-feasibility window of task A is (0; 2] for its first 

job and (3; 6] for its second job. In some cases, it 

might not be possible to derive FA feasibility 

windows for the non-critical tasks. In these cases, the 

non-critical tasks are assigned with their original 

feasibility windows, given by their original release 

times and deadlines, and while deriving task 

priorities, they are assigned a background priority so 

that they do not influence the critical task executions. 

 

6. DISKLESS CHECKPOINTING APPROACH 

Error recovery via checkpointing can be done in disk 

based or diskless manners. In the disk based 

approach, checkpoints are stored and read-back from 

a safe and a non volatile disk which incurs a great 

timing overhead to the system. But in diskless 

approach, the need of disks is eliminated and instead 

of such low speed storage devices, fast speed 

processors memories are used to store and read back 

checkpoints. In this method, check points and states 

of a processors is stored in the memory of other 

processors. When a failure occurs, the faulty 

processor can be recovered by restoring its 

checkpoints stored in the memory of a healthy 

processor. 
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Since disks are known as low speed devices using 

them for storing and reading back checkpoints would 

increase the total system runtime. On the other hand 

as diskless approaches uses fast memories, compared 

to disk based approach they would have a great 

impact on system performance. Some fault tolerant 

schedulers employs diskless checkpointing scheme to 

increase system performance. This technique 

eliminates the need of low speed hard disks for 

saving checkpoints which eventually leads to reduce 

the time takes to store checkpoints as well as reduces 

the interval of saving checkpoints. It is also 

implementable in multiprocessor systems which use 

processor’s memory to store checkpoints. 

 

There are many methods for diskless checkpointing 

technique. Neighbor based and coding based are two 

of the most famous methods. In neighbor based 

method, the checkpoints of the application processor 

is stored in the memory of the checkpointing 

processor. It cannot tolerate coincident failure of both 

procesors neither. Memory consumption is one of the 

most significant drawbacks in neighbor based 

approaches. 

 

In the coding based m out of an existing processor 

are used as checkpointing processor to code and store 

checkpoints of the application processors. Therefore 

the check points of the faulty processors can be 

decoded and calculated again by using checkpointing 

and application processors. Coding based methods 

have two steps: each application checkpoints are 

coded and stored in the memory of the checkpointing 

processor which solely codes, stores and decodes 

checkpoints. 

 

Parity technique requires only one dedicated 

checkpointing processor to store checkpoints of all 

application processors. The jth byte of the 

checkpointing processor is the result of taking XOR 

from jth byte of checkpoints of all application 

processors. When a processor fails, the checkpointing 

processor recovers the faulty processor by using its 

coded checkpoint and the checkpoint of other healthy 

processors. This technique reduces the size of 

checkpoint, but to recover faulty processor. 

 

Sima and Nasser proposes a method is a combination 

of neighbor based and coding based approaches 

which stores checkpoints in the memory of other 

processors and therefore the need of hard disks for 

storing checkpoints is eliminated. It is supposed there 

are n processors in the system and each processor can 

have one or more tasks. The proposed method groups 

processors. The number of groups is equal to the 

number of simultaneous faults should be tolerate. At 

first, each processor calculates its checkpoint and 

stores it in its dedicated memory. To tolerate K 

simultaneous faults after grouping processors into K 

distinct groups, An XOR is taken from the first tasks 

of processors of a given group and the result is stored 

in the memory of the first and second processors of 

the next group. This process is repeated for all 

corresponding tasks in all processors of all groups. 

 
Fig.3 Coding and storing checkpoints to recover 

multiple failures. 

 

In each group one faulty processor is recoverable. 

The recovery process is as follows: whenever a 

processor fails, a message is sent to the first 

checkpointing processor in the next group. If the 

checkpointing processor is healthy, the recovery 

process starts. Otherwise the message is sent to the 

second checkpointing processor. The checkpointing 

processor using its coded checkpoints and the 

received checkpoints decodes and recovers the 

checkpoints of the faulty processor and sends it back 

to the previous group to recover the faulty processor. 

The recovered processor recalculates and stores 

checkpoints of its tasks to be used for other 

processors failure in the future. 

 

7. CONCLUSION 

Error recovery is one of the most important parts of 

fault tolerance which leads to increase systems 

dependability. In this paper we describes five 

algorithms which will be used in various application 

depends on the situation. For future work it is 

suggested to consider the cost of performing 

scheduling and taking and saving checkpoints. 
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