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ABSTRACT: Anti-virus systems traditionally use signatures to 

detect malicious executables, but signatures are over fitted features 

that are of little use in machine learning. Other methods seek to 

utilize more general features, with some degree of success. Through 

this project, we presented a data mining approach that conducts an 

exhaustive feature search on a set of computer viruses. Data mining 

methods detect patterns in large amounts of data, and use these patterns 

to detect future instances in similar data. We can also use classifiers to 

detect malicious executables. A classifier is a rule set, or detection 

model, generated by the data mining approach that was trained over a 

given set of training data. 
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1. I NTRODUCTI ON 

There are many approaches used for detecting malicious 

program. But every year thousands of new viruses are found for 

that traditional approaches are not sufficient to detect those 

files. To address this problem, we explore solutions based on 

machine learning and not strictly dependent on certain 

viruses. The term virus is commonly used for malicious 

code, but for clarity reasons, we will use the term malicious code 

in further discussion, since it is relevant for all kinds of 

malicious code, such as viruses, worms, and Trojan horses. 

Malicious software is becoming a major threat to the 

computer world. The general availability of the malicious 

software programming skill and malicious code authoring 

tools makes it easier to build new malicious codes. Recent 

statistics from Windows Malicious Software Removal Tool 

(MSRT) by Microsoft shows that about 0.46% of computers are 

infected by one or more malicious codes and this number is keep 

increasing [1]. 

Moreover, the advent of more sophisticated virus 

writing techniques such as polymorphism [ 2] and 

metamorphism [3] makes it even harder to detect a virus. The 

data-mining framework automatically found patterns in our 

data set and used these patterns to detect a set of new malicious 

binaries [4]. 

Our aim is to develop a more systematic and efficient 

approach in building virus detection model. In first section 

 

Method we present whole model for select top L feature 

from malicious data set. We generate a data set of malicious 

programs and disassemble all files. 

 

2. M ALWARE TAXONOM Y 

Malware is a piece of code which changes the behavior of 

security sensitive applications, without a user consent and in 

such a way that it is then impossible to detect those changes 

using a documented features of the application. Fig. 2 shows 

the taxonomy of malware by william [9]. 

Trap Doors: It is a secret entry point into a program that 

allows someone that is aware of the back door to gain access 

without going through the usual security access procedures. 

This usually is done when the programmer is developing an 

application that has an authentic procedure, or a long setup, 

requiring the user to enter many different values to run the 

application. 

Logic Bomb: A logic bomb i s a piece of code 

intentionally inserted into a software system that will set of a 

malicious function when specified conditions are met. Logic 

bomb code is embedded in some legitimate program that is set to 

explode, when certain condition are met. 

Trojan Horse: A Trojan horse is malware that appears to 

perform a desirable function for the user prior to run or install 

but instead facilitates unauthorized access of the user’ s 

computer system. Trojans are hidden in programs which 

appear useful. We visit some site to download a program 

and then run the program now our system is infected. 

Virus: A virus is a program that can infect application 

programs by modifying them. Modification includes a copy of 

the virus programs, which can infect other programs. 
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Worms: A computer worm is a self-replicating malware 

computer program. It uses a computer network to send copies of 

itself to other nodes (computers on the network) and it may do 

so without any user intervention. 

 

 

3. FEATURE DETECTI ON APPROACH 

FROM  VIRUSES THROUGH M INING 

 

 M ethod 

In this paper we present an virus detection approach through data 

mining. For that we used some virus files from corpus data set 

and some viruses generate from vcl32 virus kit. 

First of all we take 2000 virus files from corpus data set and 

vcl 32 vi rus generator. Then through I Dpro 

disassembler, disassemble all virus file and generate ASM files 

from those. In a disassembler, assembly instructions are 

organized into basic blocks. We make logic assembly and 

abstract assembly from those files. Disassembler will generate 

a label for each basic block automatically. We believe that 

basic block capture the structure of instruction sequences and we 

process the instructions and make basic blocks. That code is “ 

logic assembly” code [ 5]. Each assembly instruction 

consists of opcode and operands. We use only opcode and ignore 

the operands and prefix because that say behavior of program. The 

resulting assembly code is called “ abstract assembly” [5]. Final 

abstract assembly as show below 

 

Example of abstract assembly 

 

 M ajor steps 

1. Make virus data sets. 

2. Disassemble virus files using any disassembler. 

3. Generate abstract assembly opcode. 

4. Feature selection algorithm. 

4.  FEATURE SELECTI ON 

The features for our classifier are instruction associations. To 

select appropriate instruction associations, we use the 

following two criteria: 

1. The instruction associations should be frequent in the 

training data set. If it occurs very rarely, we would 

rather consider this instruction association is a noise 

and not use it as our features. 

2. The instruction associations should be an indicator of 

malicious code. 

To satisfy the criteria, we only extract f requent 

instruction associations from training dataset. Only frequent 

instruction associations can be considered as our features. We 

use a variation of Apriori algorithm to generate all three types of 

frequent instruction associations from abstract assembly. 

One parameter of Apriori algorithm is “ minimum support” [ 

5]. I t is the minimal frequency of frequent associations 

among all data. More specifically, it is the minimum 

percentage of basic blocks that contains the instruction 

sequences in our case. Normalized count is the frequency of that 

instruction sequence divided by the total number of basic 

blocks in abstract assembly. We can also use N gram approach 

to find feature set from that data [6]. Then select top L 

features as our feature set. For one executable in training 

dataset, we count the number of basic blocks containing the 

feature, normalized by the number of basic blocks of that 

executable. We process every executable in our training dataset, 

and eventually we generate the input for our classifier as like 

Naive Bayes, Ripper[8]. 

 

Following Steps are Shown Basic Architecture 

Step 1: Disassemble all files and generate abstract assembly. 

Step 2: Find frequency of each instruction association (IA) 

according Type 1 and 2 

Step 3: Sort all instruction sequence and select top 10 

sequences of length k. 

 

Step 4: Take ith no. of training files (virus and benign) and find 

frequency of each IA at block level. 

Step 5: Make table of selected IA frequencies from training files. 

Step 6: Repeat step 4 and 5 for Type 1, 2 and length 2, 3 IA. 
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 Algorithm 

Find the frequent itemsets: the sets of items that have 

minimum support 

INPUT: Set of virus files (V) 

OUTPUT: Set of top instruction sequences (L). 

In order to generate set of instruction sequences we have 

set of virus file. In each virus file we have no. of basic blocks. 

Form the basic blocks occurrence of instruction sequences is 

calculated, which is called as instruction association. This 

algorithm repeats until all set of virus file encountered. Finally 

we select top L sequences which are called as top L virus 

features. 

Following are the basic steps for generating top L 

instruction sequences. 

1. For (each virus file Vi in V) do 

2. For (each basic block Bij in Vi) do 

3. Record all sequences of length sl found in Bij (with out 

repetition) 

4. Increase count of all instruction sequences. 

5. End For 

6. End For 

7. Select top L sequences. 

 

5. EXPERI M ENTAL SETUP 

Virus data set: 

(i) 1500 files from corpus data set [7] 

(ii) 500 files from vcl32 generator 

 

IDA Pro: Disassembler to generate ASM file from 

malicious files 

Virus Code: ASM file of any virus file 

Opcode selector: select opcode from asm files and make logic 

assembly and abstract assembly. 

Abstract assembly: Opcode of all virus file as per basic 

blocks. 

In above fig virus files are generated from VCL32 and 

corpus data set. Through Idpro disassembler we generate 

instruction code of those files. We present whole model for 

select top L feature from malicious data set. We generate a data 

set of malicious programs and disassemble all files. Then we 

use opcode selector for refine virus code and generate 

abstract assembly. 

 

 
 

5.1. Results 

 

(a) Model Trained by Neural Network Classifier 

Following results are comparison between 500 files and 200 

files trained by NN model. Graph shows better results for NN 

model which is trained by 500 files as compared to NN model 

trained by 200 files. From the help of Graph it is concluded that 

NN model trained by more files produces better results. 
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(b) Model Trained by SVM Classifier 

Following results are comparison between 500 files and 200 

files trained by SVM model. Next graph shows better 

results for SVM model which is trained by 500 files as 

compared to SVM model trained by 200 files. From the 

help of graph it is concluded that SVM model trained by 

more files produces better results. 

 

 

 
 

6. CONCLUSI ON 

We implemented a feature search method that focuses on 

selecting features that are applicable to different families of 

viruses. This ensured that our classifier does not rely on 

signatures. In experimental testing our method achieved 

better performance as compared to some of older virus 

detection techniques. By using both SVM and NN models, the 

selected features which are used by the classifier produces 

overall support within the data set. This indicates that our feature 

search method produces features which are more useful while 

detecting new unseen viruses. 

We also introduced an evaluation method for virus 

classifiers that tests more convincingly its ability to detect new 

viruses. Our results show that system which uses family non-

specific features performs better results. In future work we 

propose focusing on reducing the false positive rate, by using a 

large number of benign files, or by training our classifier 

using a cost matrix and setting a higher cost to misclassifying 

negative examples. This would involve by using a set of older 

viruses in the training set and a set of more recent ones in the 

test set. 
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