

 Intruder Detection Using Data Mining Techniques
 A Srinivas1, DR. Rama Raju P.hD 2

 Department of Computer Science and Engineering

 C.M.R COLLEGE OF ENGINEERING

JNTU, Hyderabad, India.

sress916@gmail.com

Dr.Ramaraju65@gmail.com

ABSTRACT: Anti-virus systems traditionally use signatures to

detect malicious executables, but signatures are over fitted features

that are of little use in machine learning. Other methods seek to

utilize more general features, with some degree of success. Through

this project, we presented a data mining approach that conducts an

exhaustive feature search on a set of computer viruses. Data mining

methods detect patterns in large amounts of data, and use these patterns

to detect future instances in similar data. We can also use classifiers to

detect malicious executables. A classifier is a rule set, or detection

model, generated by the data mining approach that was trained over a

given set of training data.

Keywords: Malicious Executable, Signature, Data Mining, Classifier.

1. I NTRODUCTI ON

There are many approaches used for detecting malicious

program. But every year thousands of new viruses are found for

that traditional approaches are not sufficient to detect those

files. To address this problem, we explore solutions based on

machine learning and not strictly dependent on certain

viruses. The term virus is commonly used for malicious

code, but for clarity reasons, we will use the term malicious code

in further discussion, since it is relevant for all kinds of

malicious code, such as viruses, worms, and Trojan horses.

Malicious software is becoming a major threat to the

computer world. The general availability of the malicious

software programming skill and malicious code authoring

tools makes it easier to build new malicious codes. Recent

statistics from Windows Malicious Software Removal Tool

(MSRT) by Microsoft shows that about 0.46% of computers are

infected by one or more malicious codes and this number is keep

increasing [1].

Moreover, the advent of more sophisticated virus

writing techniques such as polymorphism [2] and

metamorphism [3] makes it even harder to detect a virus. The

data-mining framework automatically found patterns in our

data set and used these patterns to detect a set of new malicious

binaries [4].

Our aim is to develop a more systematic and efficient

approach in building virus detection model. In first section

Method we present whole model for select top L feature

from malicious data set. We generate a data set of malicious

programs and disassemble all files.

2. M ALWARE TAXONOM Y

Malware is a piece of code which changes the behavior of

security sensitive applications, without a user consent and in

such a way that it is then impossible to detect those changes

using a documented features of the application. Fig. 2 shows

the taxonomy of malware by william [9].

Trap Doors: It is a secret entry point into a program that

allows someone that is aware of the back door to gain access

without going through the usual security access procedures.

This usually is done when the programmer is developing an

application that has an authentic procedure, or a long setup,

requiring the user to enter many different values to run the

application.

Logic Bomb: A logic bomb i s a piece of code

intentionally inserted into a software system that will set of a

malicious function when specified conditions are met. Logic

bomb code is embedded in some legitimate program that is set to

explode, when certain condition are met.

Trojan Horse: A Trojan horse is malware that appears to

perform a desirable function for the user prior to run or install

but instead facilitates unauthorized access of the user’ s

computer system. Trojans are hidden in programs which

appear useful. We visit some site to download a program

and then run the program now our system is infected.

Virus: A virus is a program that can infect application

programs by modifying them. Modification includes a copy of

the virus programs, which can infect other programs.

International Journal of Advanced and Innovative Research (2278-7844) / #181 / Volume 6 Issue 4

 © 2017 IJAIR. All Rights Reserved 181

mailto:ravijee82@gmail.comMALWARE

Worms: A computer worm is a self-replicating malware

computer program. It uses a computer network to send copies of

itself to other nodes (computers on the network) and it may do

so without any user intervention.

3. FEATURE DETECTI ON APPROACH

FROM VIRUSES THROUGH M INING

 M ethod

In this paper we present an virus detection approach through data

mining. For that we used some virus files from corpus data set

and some viruses generate from vcl32 virus kit.

First of all we take 2000 virus files from corpus data set and

vcl 32 vi rus generator. Then through I Dpro

disassembler, disassemble all virus file and generate ASM files

from those. In a disassembler, assembly instructions are

organized into basic blocks. We make logic assembly and

abstract assembly from those files. Disassembler will generate

a label for each basic block automatically. We believe that

basic block capture the structure of instruction sequences and we

process the instructions and make basic blocks. That code is “

logic assembly” code [5]. Each assembly instruction

consists of opcode and operands. We use only opcode and ignore

the operands and prefix because that say behavior of program. The

resulting assembly code is called “ abstract assembly” [5]. Final

abstract assembly as show below

Example of abstract assembly

 M ajor steps

1. Make virus data sets.

2. Disassemble virus files using any disassembler.

3. Generate abstract assembly opcode.

4. Feature selection algorithm.

4. FEATURE SELECTI ON

The features for our classifier are instruction associations. To

select appropriate instruction associations, we use the

following two criteria:

1. The instruction associations should be frequent in the

training data set. If it occurs very rarely, we would

rather consider this instruction association is a noise

and not use it as our features.

2. The instruction associations should be an indicator of

malicious code.

To satisfy the criteria, we only extract f requent

instruction associations from training dataset. Only frequent

instruction associations can be considered as our features. We

use a variation of Apriori algorithm to generate all three types of

frequent instruction associations from abstract assembly.

One parameter of Apriori algorithm is “ minimum support” [

5]. I t is the minimal frequency of frequent associations

among all data. More specifically, it is the minimum

percentage of basic blocks that contains the instruction

sequences in our case. Normalized count is the frequency of that

instruction sequence divided by the total number of basic

blocks in abstract assembly. We can also use N gram approach

to find feature set from that data [6]. Then select top L

features as our feature set. For one executable in training

dataset, we count the number of basic blocks containing the

feature, normalized by the number of basic blocks of that

executable. We process every executable in our training dataset,

and eventually we generate the input for our classifier as like

Naive Bayes, Ripper[8].

Following Steps are Shown Basic Architecture

Step 1: Disassemble all files and generate abstract assembly.

Step 2: Find frequency of each instruction association (IA)

according Type 1 and 2

Step 3: Sort all instruction sequence and select top 10

sequences of length k.

Step 4: Take ith no. of training files (virus and benign) and find

frequency of each IA at block level.

Step 5: Make table of selected IA frequencies from training files.

Step 6: Repeat step 4 and 5 for Type 1, 2 and length 2, 3 IA.

International Journal of Advanced and Innovative Research (2278-7844) / #182 / Volume 6 Issue 4

 © 2017 IJAIR. All Rights Reserved 182

 Algorithm

Find the frequent itemsets: the sets of items that have

minimum support

INPUT: Set of virus files (V)

OUTPUT: Set of top instruction sequences (L).

In order to generate set of instruction sequences we have

set of virus file. In each virus file we have no. of basic blocks.

Form the basic blocks occurrence of instruction sequences is

calculated, which is called as instruction association. This

algorithm repeats until all set of virus file encountered. Finally

we select top L sequences which are called as top L virus

features.

Following are the basic steps for generating top L

instruction sequences.

1. For (each virus file Vi in V) do

2. For (each basic block Bij in Vi) do

3. Record all sequences of length sl found in Bij (with out

repetition)

4. Increase count of all instruction sequences.

5. End For

6. End For

7. Select top L sequences.

5. EXPERI M ENTAL SETUP

Virus data set:

(i) 1500 files from corpus data set [7]

(ii) 500 files from vcl32 generator

IDA Pro: Disassembler to generate ASM file from

malicious files

Virus Code: ASM file of any virus file

Opcode selector: select opcode from asm files and make logic

assembly and abstract assembly.

Abstract assembly: Opcode of all virus file as per basic

blocks.

In above fig virus files are generated from VCL32 and

corpus data set. Through Idpro disassembler we generate

instruction code of those files. We present whole model for

select top L feature from malicious data set. We generate a data

set of malicious programs and disassemble all files. Then we

use opcode selector for refine virus code and generate

abstract assembly.

5.1. Results

(a) Model Trained by Neural Network Classifier

Following results are comparison between 500 files and 200

files trained by NN model. Graph shows better results for NN

model which is trained by 500 files as compared to NN model

trained by 200 files. From the help of Graph it is concluded that

NN model trained by more files produces better results.

International Journal of Advanced and Innovative Research (2278-7844) / #183 / Volume 6 Issue 4

 © 2017 IJAIR. All Rights Reserved 183

(b) Model Trained by SVM Classifier

Following results are comparison between 500 files and 200

files trained by SVM model. Next graph shows better

results for SVM model which is trained by 500 files as

compared to SVM model trained by 200 files. From the

help of graph it is concluded that SVM model trained by

more files produces better results.

6. CONCLUSI ON

We implemented a feature search method that focuses on

selecting features that are applicable to different families of

viruses. This ensured that our classifier does not rely on

signatures. In experimental testing our method achieved

better performance as compared to some of older virus

detection techniques. By using both SVM and NN models, the

selected features which are used by the classifier produces

overall support within the data set. This indicates that our feature

search method produces features which are more useful while

detecting new unseen viruses.

We also introduced an evaluation method for virus

classifiers that tests more convincingly its ability to detect new

viruses. Our results show that system which uses family non-

specific features performs better results. In future work we

propose focusing on reducing the false positive rate, by using a

large number of benign files, or by training our classifier

using a cost matrix and setting a higher cost to misclassifying

negative examples. This would involve by using a set of older

viruses in the training set and a set of more recent ones in the

test set.

REFERENCES

[1] Microsoft Antimalware Team, “ Microsoft Security

Intelligence Report (January - June 2007)”,

[2] C. Nachenberg, “ Computer Virus-Antivirus

coevolution”,

Communications of the ACM, 40, No. 1.

[3] P. Szor and P. Ferrie, “ Hunting for Metamorphic”, in

11th International Virus Bulletin Conference, 2001.

[4] Data Mining Methods for Detection of New

Malicious Proceedings of the 2001 IEEE Symposium on

Security and Privacy Page: 38 Year of Publication: 2001

ISSN: 1081-6011

[5] “ Efficient Virus Detection Using Dynamic

Instruction Sequences Jianyong Dai, Ratan Guha”, Joohan Lee

Journal Of Computers, 4, No. 5, MAY 2009. University of

Central Florida.

[6] A Feature Selection and Evaluation Scheme for Computer

Virus. This Paper Appears in: Data Mining, 2006. ICDM '06.

Sixth International Conference on Publication Date: 18-22

Dec. 2006 on page(s): 891-895, ISSN: 1550-4786,

ISBN: 0-7695-2701-7 INSPECAccession Number:

10222296 Digital Object Identifier:10.1109/ ICDM.2006. 4

Current Version Published: 2007-01-08.

[7] Vx heavens. http://vx.netlux.org/lib.

[8] A Data Mining Framework for Building Intrusion

Detection Models. Wenke Lee; Stolfo, S.J.; Mok, K.W.

Security and Privacy, 1999 . Proceedings of the 1999 IEEE

Symposium on 9-12 May 1999 Page(s):120-132, Digital Object

Identifier 10.1109/SECPRI. 1999.766909.

[9]. Network Security Essentials, by William Staling

International Journal of Advanced and Innovative Research (2278-7844) / #184 / Volume 6 Issue 4

 © 2017 IJAIR. All Rights Reserved 184

http://vx.netlux.org/lib

