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Abstract: Microprocessor performance has improved 

rapidly these years. In contrast memory latencies and 

bandwidths have improved little. The result is that 

the memory access time is the bottleneck which limits 

the system performance. In case of larger system 

design which requires more number of I/O ports and 

more memory capacity the system designer may 

interface external I/O ports and memory with the 

system.  We are using advanced microcontroller bus 

architecture with its advanced high performance bus. 

The Advanced Microcontroller Bus Architecture 

(AMBA) is a widely used interconnection standard 

for System on Chip (SoC) design. In order to support 

high-speed pipelined data transfers, AMBA supports 

a rich set of bus signals, making the analysis of 

AMBA-based embedded systems a challenging 

proposition. The goal of this   is to synthesize and 

simulate complex interface bridge between Advanced 

eXtensible Interface (AXI) and Advanced Peripheral 

Bus (APB) known as AXI2APB Bridge. This   also 

involves the Back notation for Synthesized of Bridge 

module and to perform Functional and Timing 

Simulation using Xilinx ISE. In this we are using ace 

to APB interfacing via a bridge and using parallel 

operations which we are divided the large program or 

modules into a smaller one. Here used parallel 

pipeline to fast operation. In the thesis we are 

proposing to design a very high performance ace to 

APB and vice versa bridge and to achieve our 

proposed work we have used pipelining for data 

transfer. 

 

I. INTRODUCTION 

The Advanced Microcontroller Bus Architecture 

(AMBA) is a widely used interconnection standard 

for System on Chip (SoC) design [1].In order to 

support high-speed pipelined data transfers AMBA 

supports a rich set of bus signals, making the 

analysis of AMBA-based embedded systems a 

challenging proposition. The AMBA specification 

[2] has become a de-facto standard for the 

semiconductor industry, it has been adopted by 

more than 95% of ARM‟s partners and a number of 

IP providers. The specification has been 

successfully implemented in several ASIC designs. 

Since the AMBA interface is processor and 

technology independent, it enhances the reusability 

of peripheral and system components across a wide 

range of applications. The AMBA specification has 

been derived to satisfy the following four key 

requirements. 

(i) To facilitate the right-first-time development of 

Embedded Microcontroller Products with one or 

more CPUs or signal processors. 

(ii) To be technology-independent and ensure that 

highly reusable peripheral and system macro cells 

can be migrated across a diverse range of IC 

processes and be appropriate for full-custom, 

standard cell and gate array technologies. 

(iii) To encourage modular system design to 

improve processor independence, providing a 

development road-map for advanced cached CPU 

cores and the development of peripheral libraries. 

(iv) To minimize the silicon infrastructure required 

supporting efficient on-chip and off-chip 

communication for both operation and 

manufacturing test. This paper is to design the 

AMBA based AXI2APB Bridge which interfaces 

ace and APB buses. It is required to bridge the 

communication gap between low bandwidth 

peripherals on APB with the high bandwidth ARM 

Processors and/or other high-speed devices on 

AXI. This is to ensure that there is no data loss 

between ace to APB or APB to ace data transfers. 

In our work we intend to use Verilog HDL 

(Hardware Description Language) for designing the 

RTL (Register Transfer Level) code[3]. Synthesis 

and Simulation is done using Xilinx[4]. 

 

II. TYPICAL AMBA BASED 

MICROCONTROLLER 

An AMBA-based microcontroller typically consists 

of a high-performance system backbone bus 

(AMBA ace or AMBA ASB), able to sustain the 

external memory bandwidth on which the CPU, on-

chip memory and other 

Direct Memory Access (DMA) devices reside. This 

bus provides a high-bandwidth interface between 

the elements that are involved in the majority of 

transfers. Also located on the high performance bus 

is a bridge to the lower bandwidth APB, where 

most of the peripheral devices in the system are 

located. AMBA APB provides the basic peripheral 

[5] macro cell communications infrastructure as a 

secondary bus from the higher bandwidth pipelined 

main system bus. Such peripherals typically:  
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Figure-1. AMBA based Simple Microcontroller 

(i) Have interfaces which are memory-mapped 

registers 

(ii) Have no high-bandwidth interfaces 

(iii) Are accessed under programmed control. 

 

III. OVERVIEW OF AMBA BUSES 

The Advanced Microcontroller Bus Architecture 

(AMBA) is ARM‟s no-cost, open specification[2], 

which defines an on-chip communications standard 

for designing high performance Embedded 

Microcontrollers. Three distinct buses are defined 

within the AMBA specification: 

(i) Advanced eXtensible Interface (AXI) 

(ii) Advanced high-performance bus (AHB) 

(iii) The Advanced System Bus (ASB) 

(iv) The Advanced Peripheral Bus (APB). 

 

A. Advanced eXtensible Interface (AXI) 

AXI is a new generation of AMBA bus, which is 

intended to address the requirements of high-

performance synthesizable designs. It is a high-

performance system bus that supports multiple bus 

masters and provides high-bandwidth operation. 

AMBA ace [6] implements the features required 

for high-performance, high clock frequency 

systems including: 

• High performance 

• Pipelined operation 

• Multiple bus masters 

• Burst transfers 

• Single-cycle bus master handover 

• Non-tri state implementation 

• Wider data bus configurations(64/128bits). 

Bridging between this higher level of bus and the 

current ASB/APB can be done efficiently to ensure 

that any existing designs can be easily integrated. 

An AMBA ace design may contain one or more 

bus masters typically a system would contain at 

least the processor and test interface. However, it 

would also be common for a Direct Memory 

Access (DMA) or Digital Signal Processor (DSP) 

to be included as bus masters. The external 

memory interface, APB Bridge and any internal 

memory are the most common ace slaves. Any 

other peripheral in the system could also be 

included as an ace slave. However, low-bandwidth 

peripherals typically reside on the APB. 

 

B. Advanced peripheral bus (APB) 

The Advanced Peripheral Bus (APB) is part of the 

Advanced Microcontroller Bus Architecture 

(AMBA) hierarchy [7] of buses and is optimized 

for minimal power consumption and reduced 

interface complexity. 

The AMBA APB should be used to interface to any 

peripherals which are low-bandwidth and do not 

require the high performance of a pipelined bus 

interface. The latest revision of the APB ensures 

that all signal transitions are only related to the 

rising edge of the clock. This improvement means 

the APB peripherals can be integrated easily into 

any design flow. 

Features of APB: 

• Low power 

• Latched address and control 

• Simple interface 

• Suitable for many peripherals 

These changes to the APB also make it simpler to 

interface it to the new Advanced High-performance 

Bus (AHB). 

 

IV. OPERATION OF AXI2APB BRIDGE 

The AXI2APB interfaces ace and APB. It buffers 

address, controls and data from the AXI, drives the 

APB peripherals and return data along with 

response signal to the AHB. The AXI2APB 

interface is designed to operate when ace and APB 

clocks have the any combination of frequency and 

phase [8]. The AHB2APB performs transfer of data 

from ace to APB for write cycle and APB to ace for 

Read cycle [2]. 

 

A. Features of AXI2APB Bridge 

Interface between AMBA Advanced eXtensible 

Interface (AXI) and AMBA peripheral bus (APB) 

[2], provides latching of address, controls and data 

signals for APB peripherals. Supports for the 

following 

• APB compliant slaves and peripherals. 

• Peripherals which require additional wait states. 
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Figure 2. Pin details of AXI2APB Bridge 

 

B. ACE Response: The sub-module ace Response 

sequences the way that the AXI2APB responds to 

ace requests. Valid commands are forwarded to 

control transfer for action. Invalid commands are 

not forwarded and an error message is generated. It 

operates on ace CLOCK and RESET. The control 

Transfers block in Fig. 3 transfers ace control 

signal to the APB access with appropriate delays 

inserted to map the pipelined ace protocol to the 

two cycle APB protocol. It ensures that only one 

request is presented to the APB access while it is 

processing a request. It operates on ace CLOCK 

and RESET. 

 

 
 

Figure 3. Internal architecture of the bridge 

C. APB Access 

The APB access generates the control signals on 

the APB for read and writes cycles. It operates on 

APB CLOCK and RESET. The APB Bridge is the 

only bus master on the AMBA APB. In addition, 

the APB Bridge is also a slave on the higher-level 

system bus. The bridge unit converts system bus 

transfers into APB transfers and performs the 

following functions: 

• Latches the address and holds it valid throughout 

the transfer. 

• Decodes the address and generates a peripheral 

select (PSEL). Only one select signal can be active 

during a transfer. 

• Drives the data onto the APB for a write transfer. 

• Drives the APB data onto the system bus for a 

read transfer. 

• Generates a timing strobe, PENABLE, for the 

transfer. 

 

V. DESIGN OF AXI2APB BRIDGE 

AHB2APB Bridge operates on HCLK and APB 

access sub module operates on PCLK. ace response 

and Control transfer is together termed as ace 

interface and APB access is termed as APB 

interface to ensure the correct generation of 

suitable control signals and address we use three 

internal signals in the bridge module namely: 

PENDWR (Pending Write) 

PENDRD (Pending Read) 

PDONE (Peripheral operation done) 

 

The capture of address & control for Write or Read 

operation is done when HREADY, HTRANS and 

HSEL are valid. READY is the only signal that is 

the output from the bridge to ace master to cope up 

the communication between ace and APB. Hence 

the generation of HREADY signal is very 

significant in the bridge module. By using the 

internal signals PENDWR and PENDRD and 

double synchronized signal (Double 

synchronization is explained later in this section) 

PDONE, HREADY generation is made easy to 

capture the next control for Write or Read 

operation from ace to APB. Since the sub modules 

operate on different clock domains namely HCLK 

and PCLK, there is a need for interfacing these 

clock domains. Any two systems are considered 

asynchronous to each other: 

• When they operate at two different frequency 

• When they operate at same frequency, but at two 

different clock phase angles 

 

This interfacing is difficult in the sense that design 

becomes asynchronous at the boundary of 

interface, which results in setup and hold time 

violation, Meta stability and unreliable data 

transfers. Hence we need to go out for special 

design and interfacing techniques. In such a case if 

we need to do data transfer, there are very few 

methods to achieve this namely: 

• Handshake signalling method 

• Asynchronous FIFO 

 

Both have its own advantages and disadvantages. 

In our paper we have used Handshake signalling 

Method. In Handshake signalling method the ace 

interface sends data to APB interface based on the 

handshake signals PENDWR (or PENDRD) and 
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PDONE signals. The protocol for this uses the 

same method that is found with 8155 chip used 

with 8085 based on handshake signals Request and 

Acknowledge. 

 

 

VI. PROTOCOL 

AHB interface asserts the PENDWR (or PENDRD) 

signal, makes the APB interface to accept or to 

send the data on the data bus.APB interface asserts 

the PDONE signal, asserting that it has accepted or 

sent the data. This method is straightforward but it 

has got loop holes. when APB interface samples 

the ace interface„s PENDWR (or PENDRD) line 

and ace interface samples APB interface‟s PDONE 

line, they are done with respect to their internal 

clock, so there will be setup and hold time 

violation. To avoid this we use double stage 

synchronizers, which are immune to meta stability 

to a good extent.  The double synchronizers for 

PENDRD and PDONE will be same as double 

synchronizers for PENDWR with the only 

difference that synchronizer for PDONE is made to 

operate on HCLK unlike PENDWR and PENRD 

which operate on PCLK. If we do the double 

synchronizing, then the transfer rate comes down, 

due to the fact that a lot of clock cycles are wasted 

just handshaking. 

 

VII. LITERATURE WORK 

Chenghai  et al [1] ARM introduced the Advanced 

Microcontroller Bus Architecture (AMBA) 4.0 

specifications in March 2010, which includes 

advanced eXtensiable Interface (AXI) 4.0. AMBA 

bus protocol has become the de facto standard SoC 

bus. That means more and more existing IPs must 

be able to communicate with AMBA 4.0 bus. 

Based on AMBA 4.0 bus, we designed an 

Intellectual Property (IP) core of Advanced 

Peripheral Bus (APB) Bridge, which translates the 

AXI4.0-lite transactions into APB 4.0 transactions. 

The bridge provides an interface between the high-

performance AXI bus and low-power APB domain. 

 

Varsha vishwarkamaet al [2] Microprocessor 

performance has improved rapidly these years. In 

contrast memory latencies and bandwidths have 

improved little. The result is that the memory 

access time is the bottleneck which limits the 

system performance. In case of larger system 

design which requires more number of I/O ports 

and more memory capacity the system designer 

may interface external I/O ports and memory with 

the system. In this paper we are using advanced 

microcontroller bus architecture with its advanced 

high performance bus. AMBAAXI provides 

parallel communications with multi master bus 

management, high clock frequency, high 

performance systems for data transfer operation 

from the memory interfaced with the master or 

slave peripheral devices. AMBA AXI supports on 

chip communications standard for designing high-

performance embedded microcontrollers. 

 

 

VIII. CONCLUSION 

The RTL Simulation of AXI2APB Bridge has been 

verified and validated by using suitable test 

benches namely ace Driver/Monitor and APB 

Driver/Monitor. The AXI2APB Bridge has been 

successfully synthesized by the extraction of 

Synthesized Netlist with unit delays and verified by 

comparing the Gate level Simulation with RTL 

Simulation results. The Back Annotation of 

AXI2APB Bridge has also been successfully 

completed by the extraction of Synthesized Netlist 

with suitable delays & verified by the comparison 

of Gate level simulation with RTL simulation 

results. Thus AXI2APB Bridge is a standalone 

solution to extract the advantages of newly 

developed ARM based AMBA ace bus by bridging 

the common gap between ace and the existing APB 

bus. 
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