
Design of AXI Coherency Extensions (ACE) to APB

Bridge: Review
Ashish jhariya, Deepika soni

1M. Tech. Scholar, 1, Asst. Prof. 2

GGITS, Jabalpur

Abstract: Microprocessor performance has improved

rapidly these years. In contrast memory latencies and

bandwidths have improved little. The result is that

the memory access time is the bottleneck which limits

the system performance. In case of larger system

design which requires more number of I/O ports and

more memory capacity the system designer may

interface external I/O ports and memory with the

system. We are using advanced microcontroller bus

architecture with its advanced high performance bus.

The Advanced Microcontroller Bus Architecture

(AMBA) is a widely used interconnection standard

for System on Chip (SoC) design. In order to support

high-speed pipelined data transfers, AMBA supports

a rich set of bus signals, making the analysis of

AMBA-based embedded systems a challenging

proposition. The goal of this is to synthesize and

simulate complex interface bridge between Advanced

eXtensible Interface (AXI) and Advanced Peripheral

Bus (APB) known as AXI2APB Bridge. This also

involves the Back notation for Synthesized of Bridge

module and to perform Functional and Timing

Simulation using Xilinx ISE. In this we are using ace

to APB interfacing via a bridge and using parallel

operations which we are divided the large program or

modules into a smaller one. Here used parallel

pipeline to fast operation. In the thesis we are

proposing to design a very high performance ace to

APB and vice versa bridge and to achieve our

proposed work we have used pipelining for data

transfer.

I. INTRODUCTION

The Advanced Microcontroller Bus Architecture

(AMBA) is a widely used interconnection standard

for System on Chip (SoC) design [1].In order to

support high-speed pipelined data transfers AMBA

supports a rich set of bus signals, making the

analysis of AMBA-based embedded systems a

challenging proposition. The AMBA specification

[2] has become a de-facto standard for the

semiconductor industry, it has been adopted by

more than 95% of ARM‟s partners and a number of

IP providers. The specification has been

successfully implemented in several ASIC designs.

Since the AMBA interface is processor and

technology independent, it enhances the reusability

of peripheral and system components across a wide

range of applications. The AMBA specification has

been derived to satisfy the following four key

requirements.

(i) To facilitate the right-first-time development of

Embedded Microcontroller Products with one or

more CPUs or signal processors.

(ii) To be technology-independent and ensure that

highly reusable peripheral and system macro cells

can be migrated across a diverse range of IC

processes and be appropriate for full-custom,

standard cell and gate array technologies.

(iii) To encourage modular system design to

improve processor independence, providing a

development road-map for advanced cached CPU

cores and the development of peripheral libraries.

(iv) To minimize the silicon infrastructure required

supporting efficient on-chip and off-chip

communication for both operation and

manufacturing test. This paper is to design the

AMBA based AXI2APB Bridge which interfaces

ace and APB buses. It is required to bridge the

communication gap between low bandwidth

peripherals on APB with the high bandwidth ARM

Processors and/or other high-speed devices on

AXI. This is to ensure that there is no data loss

between ace to APB or APB to ace data transfers.

In our work we intend to use Verilog HDL

(Hardware Description Language) for designing the

RTL (Register Transfer Level) code[3]. Synthesis

and Simulation is done using Xilinx[4].

II. TYPICAL AMBA BASED

MICROCONTROLLER

An AMBA-based microcontroller typically consists

of a high-performance system backbone bus

(AMBA ace or AMBA ASB), able to sustain the

external memory bandwidth on which the CPU, on-

chip memory and other

Direct Memory Access (DMA) devices reside. This

bus provides a high-bandwidth interface between

the elements that are involved in the majority of

transfers. Also located on the high performance bus

is a bridge to the lower bandwidth APB, where

most of the peripheral devices in the system are

located. AMBA APB provides the basic peripheral

[5] macro cell communications infrastructure as a

secondary bus from the higher bandwidth pipelined

main system bus. Such peripherals typically:

International Journal of Advanced and Innovative Research (2278-7844) / # 149 / Volume 6 Issue 4

 © 2017 IJAIR. All Rights Reserved 149

Figure-1. AMBA based Simple Microcontroller

(i) Have interfaces which are memory-mapped

registers

(ii) Have no high-bandwidth interfaces

(iii) Are accessed under programmed control.

III. OVERVIEW OF AMBA BUSES

The Advanced Microcontroller Bus Architecture

(AMBA) is ARM‟s no-cost, open specification[2],

which defines an on-chip communications standard

for designing high performance Embedded

Microcontrollers. Three distinct buses are defined

within the AMBA specification:

(i) Advanced eXtensible Interface (AXI)

(ii) Advanced high-performance bus (AHB)

(iii) The Advanced System Bus (ASB)

(iv) The Advanced Peripheral Bus (APB).

A. Advanced eXtensible Interface (AXI)

AXI is a new generation of AMBA bus, which is

intended to address the requirements of high-

performance synthesizable designs. It is a high-

performance system bus that supports multiple bus

masters and provides high-bandwidth operation.

AMBA ace [6] implements the features required

for high-performance, high clock frequency

systems including:

• High performance

• Pipelined operation

• Multiple bus masters

• Burst transfers

• Single-cycle bus master handover

• Non-tri state implementation

• Wider data bus configurations(64/128bits).

Bridging between this higher level of bus and the

current ASB/APB can be done efficiently to ensure

that any existing designs can be easily integrated.

An AMBA ace design may contain one or more

bus masters typically a system would contain at

least the processor and test interface. However, it

would also be common for a Direct Memory

Access (DMA) or Digital Signal Processor (DSP)

to be included as bus masters. The external

memory interface, APB Bridge and any internal

memory are the most common ace slaves. Any

other peripheral in the system could also be

included as an ace slave. However, low-bandwidth

peripherals typically reside on the APB.

B. Advanced peripheral bus (APB)

The Advanced Peripheral Bus (APB) is part of the

Advanced Microcontroller Bus Architecture

(AMBA) hierarchy [7] of buses and is optimized

for minimal power consumption and reduced

interface complexity.

The AMBA APB should be used to interface to any

peripherals which are low-bandwidth and do not

require the high performance of a pipelined bus

interface. The latest revision of the APB ensures

that all signal transitions are only related to the

rising edge of the clock. This improvement means

the APB peripherals can be integrated easily into

any design flow.

Features of APB:

• Low power

• Latched address and control

• Simple interface

• Suitable for many peripherals

These changes to the APB also make it simpler to

interface it to the new Advanced High-performance

Bus (AHB).

IV. OPERATION OF AXI2APB BRIDGE

The AXI2APB interfaces ace and APB. It buffers

address, controls and data from the AXI, drives the

APB peripherals and return data along with

response signal to the AHB. The AXI2APB

interface is designed to operate when ace and APB

clocks have the any combination of frequency and

phase [8]. The AHB2APB performs transfer of data

from ace to APB for write cycle and APB to ace for

Read cycle [2].

A. Features of AXI2APB Bridge

Interface between AMBA Advanced eXtensible

Interface (AXI) and AMBA peripheral bus (APB)

[2], provides latching of address, controls and data

signals for APB peripherals. Supports for the

following

• APB compliant slaves and peripherals.

• Peripherals which require additional wait states.

International Journal of Advanced and Innovative Research (2278-7844) / # 150 / Volume 6 Issue 4

 © 2017 IJAIR. All Rights Reserved 150

Figure 2. Pin details of AXI2APB Bridge

B. ACE Response: The sub-module ace Response

sequences the way that the AXI2APB responds to

ace requests. Valid commands are forwarded to

control transfer for action. Invalid commands are

not forwarded and an error message is generated. It

operates on ace CLOCK and RESET. The control

Transfers block in Fig. 3 transfers ace control

signal to the APB access with appropriate delays

inserted to map the pipelined ace protocol to the

two cycle APB protocol. It ensures that only one

request is presented to the APB access while it is

processing a request. It operates on ace CLOCK

and RESET.

Figure 3. Internal architecture of the bridge

C. APB Access

The APB access generates the control signals on

the APB for read and writes cycles. It operates on

APB CLOCK and RESET. The APB Bridge is the

only bus master on the AMBA APB. In addition,

the APB Bridge is also a slave on the higher-level

system bus. The bridge unit converts system bus

transfers into APB transfers and performs the

following functions:

• Latches the address and holds it valid throughout

the transfer.

• Decodes the address and generates a peripheral

select (PSEL). Only one select signal can be active

during a transfer.

• Drives the data onto the APB for a write transfer.

• Drives the APB data onto the system bus for a

read transfer.

• Generates a timing strobe, PENABLE, for the

transfer.

V. DESIGN OF AXI2APB BRIDGE

AHB2APB Bridge operates on HCLK and APB

access sub module operates on PCLK. ace response

and Control transfer is together termed as ace

interface and APB access is termed as APB

interface to ensure the correct generation of

suitable control signals and address we use three

internal signals in the bridge module namely:

PENDWR (Pending Write)

PENDRD (Pending Read)

PDONE (Peripheral operation done)

The capture of address & control for Write or Read

operation is done when HREADY, HTRANS and

HSEL are valid. READY is the only signal that is

the output from the bridge to ace master to cope up

the communication between ace and APB. Hence

the generation of HREADY signal is very

significant in the bridge module. By using the

internal signals PENDWR and PENDRD and

double synchronized signal (Double

synchronization is explained later in this section)

PDONE, HREADY generation is made easy to

capture the next control for Write or Read

operation from ace to APB. Since the sub modules

operate on different clock domains namely HCLK

and PCLK, there is a need for interfacing these

clock domains. Any two systems are considered

asynchronous to each other:

• When they operate at two different frequency

• When they operate at same frequency, but at two

different clock phase angles

This interfacing is difficult in the sense that design

becomes asynchronous at the boundary of

interface, which results in setup and hold time

violation, Meta stability and unreliable data

transfers. Hence we need to go out for special

design and interfacing techniques. In such a case if

we need to do data transfer, there are very few

methods to achieve this namely:

• Handshake signalling method

• Asynchronous FIFO

Both have its own advantages and disadvantages.

In our paper we have used Handshake signalling

Method. In Handshake signalling method the ace

interface sends data to APB interface based on the

handshake signals PENDWR (or PENDRD) and

International Journal of Advanced and Innovative Research (2278-7844) / # 151 / Volume 6 Issue 4

 © 2017 IJAIR. All Rights Reserved 151

PDONE signals. The protocol for this uses the

same method that is found with 8155 chip used

with 8085 based on handshake signals Request and

Acknowledge.

VI. PROTOCOL

AHB interface asserts the PENDWR (or PENDRD)

signal, makes the APB interface to accept or to

send the data on the data bus.APB interface asserts

the PDONE signal, asserting that it has accepted or

sent the data. This method is straightforward but it

has got loop holes. when APB interface samples

the ace interface„s PENDWR (or PENDRD) line

and ace interface samples APB interface‟s PDONE

line, they are done with respect to their internal

clock, so there will be setup and hold time

violation. To avoid this we use double stage

synchronizers, which are immune to meta stability

to a good extent. The double synchronizers for

PENDRD and PDONE will be same as double

synchronizers for PENDWR with the only

difference that synchronizer for PDONE is made to

operate on HCLK unlike PENDWR and PENRD

which operate on PCLK. If we do the double

synchronizing, then the transfer rate comes down,

due to the fact that a lot of clock cycles are wasted

just handshaking.

VII. LITERATURE WORK

Chenghai et al [1] ARM introduced the Advanced

Microcontroller Bus Architecture (AMBA) 4.0

specifications in March 2010, which includes

advanced eXtensiable Interface (AXI) 4.0. AMBA

bus protocol has become the de facto standard SoC

bus. That means more and more existing IPs must

be able to communicate with AMBA 4.0 bus.

Based on AMBA 4.0 bus, we designed an

Intellectual Property (IP) core of Advanced

Peripheral Bus (APB) Bridge, which translates the

AXI4.0-lite transactions into APB 4.0 transactions.

The bridge provides an interface between the high-

performance AXI bus and low-power APB domain.

Varsha vishwarkamaet al [2] Microprocessor

performance has improved rapidly these years. In

contrast memory latencies and bandwidths have

improved little. The result is that the memory

access time is the bottleneck which limits the

system performance. In case of larger system

design which requires more number of I/O ports

and more memory capacity the system designer

may interface external I/O ports and memory with

the system. In this paper we are using advanced

microcontroller bus architecture with its advanced

high performance bus. AMBAAXI provides

parallel communications with multi master bus

management, high clock frequency, high

performance systems for data transfer operation

from the memory interfaced with the master or

slave peripheral devices. AMBA AXI supports on

chip communications standard for designing high-

performance embedded microcontrollers.

VIII. CONCLUSION

The RTL Simulation of AXI2APB Bridge has been

verified and validated by using suitable test

benches namely ace Driver/Monitor and APB

Driver/Monitor. The AXI2APB Bridge has been

successfully synthesized by the extraction of

Synthesized Netlist with unit delays and verified by

comparing the Gate level Simulation with RTL

Simulation results. The Back Annotation of

AXI2APB Bridge has also been successfully

completed by the extraction of Synthesized Netlist

with suitable delays & verified by the comparison

of Gate level simulation with RTL simulation

results. Thus AXI2APB Bridge is a standalone

solution to extract the advantages of newly

developed ARM based AMBA ace bus by bridging

the common gap between ace and the existing APB

bus.

REFERENCES
[1] ARM, "AMBA Protocol Specification 4.0",

www.arm.com, 2010.

[2] Ying-Ze Liao, "System Design and Implementation

of AXI Bus", National Chiao Tung University, October

2007.

[3] Clifford E. Cummings, "Coding And Scripting

Techniques for FSM Designs with Synthesis-Optimized,

Glitch-Free Outputs," SNUG (Synopsys Users Group

Boston, MA 2000) Proceedings, September 2000.

[4] Clifford E. Cummings, “Synthesis and Scripting

Techniques for Designing Multi-Asynchronous Clock

Designs,” SNUG 2001

[5] Chris Spear, "SystemVerilog for Verification, 2nd

Edition"Springer,www.springeronline.com, 2008.

[6] Lahir, K., Raghunathan A., Lakshminarayana G.,

“LOTTERYBUS: anew high-performance

communication architecture for system-on-chip designs,”

in Proceedings of Design Automation Conference, 2001.

[7] Sanghun Lee, Chanho Lee, Hyuk-Jae Lee, “A new

multi-channel on chip-bus architecture for system-on-

chips,” in Proceedings of IEEE international SOC

Conference, September 2004.

[8] Martino Ruggiero, Rederico Angiolini, Francesco

Poletti, Davide Bertozzi, Luca 86

[9] Benini, Roberto Zafalon, “Scalability Analysis of

Evolving SoCInterconnect Protocols,” Int. Symposium

on System-on-Chip, 2004. Lukai Cai, Daniel Gajski,

“Transaction level modeling: an overview,” in

Proceedings of the 1st IEEE/ACM/IFIP international

conference on Hardware/software codesign and system

synthesis, October 2003.

[10] Min-Chi Tsai, “Smart Memory Controller Design

for Video Applications,” Master thesis: National Chiao

Tung University, July 2006.

International Journal of Advanced and Innovative Research (2278-7844) / # 152 / Volume 6 Issue 4

 © 2017 IJAIR. All Rights Reserved 152

