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Abstract— Data analysis plays a vital role for understanding 

various phenomena. Cluster analysis is a challenging field of 

research in which its potential applications pose their own special 

necessities. Clustering is used to group the similar objects in the 

datasets and further precede these clustering data to perform other 

data analysis techniques. This paper deals with the types of 

clustering techniques and the type of data used in each clustering 

technique. And the efficiency of clustering technique over 

classification is given in this paper. Several clustering techniques 

are discussed here to find out the suitable technique for different 

datasets. 

 
Keywords — Hierarchical Clustering, Density-based Clustering, 

Model-based clustering, Constraint-based clustering, Partitioning 

methods. 

 
I.INTRODUCTION 

Clustering is the process of grouping a set of physical or 

abstract objects into classes of similar objects is called 

clustering. A cluster is a collection of data objects that are 

similar to one another within the same cluster and are dissimilar 

to the objects in other clusters. A cluster of data objects can be 

treated collectively as one group and so may be considered as a 

form of data compression. The following are typical 

requirements of clustering in data mining: 

 

•    Scalability 

• Ability to deal with different types of attributes 

• Discovery of clusters with arbitrary 

• Minimal requirements for domain knowledge to 

determine input parameters 

• Ability to deal with noisy data  

• High dimensionality 

• Interpretability and usability. 

 

II. TYPES OF DATA USED IN CLUSTERING ANALYSIS 

We study the types of data that often occur in cluster analysis 

and how to preprocess them for such an analysis. Suppose that a 

data set to be clustered contains n objects, which may represent 

persons, houses, documents, countries, and so on. Main 

memory-based clustering algorithms typically operate on either 

of the following two data structures. 

 

A. Data matrix (or object-by-variable structure): This 

represents n objects, such as persons, with p variables (also 

called measurements or attributes), such as age, height, weight, 

gender, and so on. The structure is in the form of a relational 

table, or n-by-p matrix (n objects _p variables): 

  

 

 

 

 

 

 

 B. Dissimilarity matrix (or object-by-object structure): 

This stores a collection of proximities that are available for 

all pairs of n objects. It is often represented by an n-by-n 

table: where d(i, j) is the measured difference or 

dissimilarity between objects i and j. In general, d(i, j) is a 

nonnegative number that is close to 0 when objects i and j 

are highly similar or “near” each other, and becomes larger 

the more they differ. Since d(i, j)=d( j, i), and d(i, i)=0, we 

have the matrix in (7.2). The rows and columns of the data 

matrix represent different entities, while those of the 

dissimilarity matrix represent the same entity. Thus, the 

data matrix is often called a two-mode matrix, whereas the 

dissimilarity matrix is called a one-mode matrix. Many 

clustering algorithms operate on a dissimilarity matrix. If 

the data are presented in the form of a data matrix, it can 

first be transformed into a dissimilarity matrix before 

applying such clustering algorithms. 

 

a) Interval-Scaled Variables 

 “What are interval-scaled variables?” Interval-scaled 

variables are continuous measurements of a roughly linear 

scale. Typical examples include weight and height, latitude 

and longitude coordinates (e.g., when clustering houses), 

and weather temperature. The measurement unit used can 

affect the clustering analysis. For example, changing 

measurement units from meters to inches for height, or 

from kilograms to pounds for weight, may lead to a very 

different clustering structure. In general, expressing a 

variable in smaller units will lead to a larger range for that 

variable, and thus a larger effect on the resulting clustering 

structure. 

 

How can the data for a variable be standardized?” To 

standardize measurements, one choice is to convert the 

original measurements to unit less variables. Given 

measurements for a variable f , this can be performed as 

follows. 1. Calculate the mean absolute deviation, 2. 

Calculate the standardized measurement, or z-score: 

 

After standardization, or without standardization in certain 

applications, the dissimilarity (or similarity) between the 

objects described by interval-scaled variables is typically 

computed based on the distance between each pair of 

objects. The most popular distance measure is Euclidean 

distance, Another well-known metric is Manhattan (or city 

block) distance, Both the Euclidean distance and Manhattan 

distance satisfy the following mathematic requirements of a 

distance function: 

 

 1. d(i, j) _ 0: Distance is a nonnegative number.                                

 2. d(i, i) = 0: The distance of an object to itself is 0. 

 3. d(i, j) = d( j, i): Distance is a symmetric function. 
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 4. d(i, j) _ d(i, h)+d(h, j): Going directly from object i to 

object j in space is no more than making a detour over any 

other object h (triangular inequality). 

 

 b) Binary Variables 

 Let us see how to compute the dissimilarity between 

objects described by either symmetric or asymmetric binary 

variables. 

 A binary variable has only two states: 0 or 1, where 0 

means that the variable is absent, and 1 means that it is 

present. Given the variable smoker describing a patient, for 

instance, 1 indicates that the patient smokes, while 0 

indicates that the patient does not. Treating binary variables 

as if they are interval-scaled can lead to misleading 

clustering results. Therefore, methods specific to binary 

data are necessary for computing dissimilarities. 

 

 “What is the difference between symmetric and 

asymmetric binary variables?” A binary variable is 

 symmetric if both of its states are equally valuable and 

carry the same weight; that is, there is no preference on 

which outcome should be coded as 0 or 1. One such 

example could be the attribute gender having the states 

male and female. Dissimilarity that is based on symmetric 

binary variables is called symmetric binary dissimilarity. Its 

dissimilarity (or distance) measure, defined in Equation 

(7.9), can be used to assess the dissimilarity between 

objects i and j. 

 

 A binary variable is asymmetric if the outcomes of the 

states are not equally important, such as the positive and 

negative outcomes of a disease test. By convention, we 

shall code the most important outcome, which is usually the 

rarest one, by 1 (e.g., HIV positive) and the other by 0 (e.g., 

HIV negative). Given two asymmetric binary variables, the 

agreement of two 1s (a positive match) is then considered 

more significant than that of two 0s (a negative match). 

Therefore, such binary variables are often considered 

“monary” (as if having one state). The dissimilarity based 

on such variables is called asymmetric binary dissimilarity, 

where the number of negative matches, t, is considered 

unimportant and thus is ignored in the computation as 

shown below. 

 

C) Categorical, Ordinal, and Ratio-Scaled Variables 

 

1. Categorical Variables: 

 

 A categorical variable is a generalization of the binary 

variable in that it can take on more than two states. 

 

 For example, map color is a categorical variable that may 

have, say, five states: red, yellow, green, pink, and blue. 

 

 Let the number of states of a categorical variable be M. 

The states can be denoted by letters, symbols, or a set of 

integers, such as 1, 2, : : : , M.Notice that such integers are 

used just for data handling and do not represent any specific 

ordering. 

 

       “How is dissimilarity computed between objects 

described by categorical variables?” The dissimilarity 

between two objects i and j can be computed based on the 

ratio of mismatches: 

        where m is the number of matches (i.e., the number of 

variables for which i and j are in the same state), and p is 

the total number of variables. Weights can be assigned to 

increase the effect of m or to assign greater weight to the 

matches in variables having a larger number of states. 

 

2. Ordinal Variables 

 A discrete ordinal variable resembles a categorical 

variable, except that the M states of the ordinal value are 

ordered in a meaningful sequence. Ordinal variables are 

very useful for registering subjective assessments of 

qualities that cannot be measured objectively. For example, 

professional ranks are often enumerated in a sequential 

order, such as assistant, associate, and full for professors. A 

continuous ordinal variable looks like a set of continuous 

data of an unknown scale; that is, the relative ordering of 

the values is essential but their actual magnitude is not. For 

example, the relative ranking in a particular sport (e.g., 

gold, silver, bronze) is often more essential than the actual 

values of a particular measure. Ordinal variables may also 

be obtained from the discretization of interval-scaled 

quantities by splitting the value range into a finite number 

of classes. The values ofan ordinal variable can be mapped 

to ranks. For example, suppose that an ordinal variable f 

has Mf states. These ordered states define the ranking 1, : : : 

, Mf 

 

 “How are ordinal variables handled?” The treatment of 

ordinal variables is quite similar to that of intervalscaled 

variables when computing the dissimilarity between 

objects. Suppose that f is a variable from a set of ordinal 

variables describing n objects. The dissimilarity 

computation with respect to f involves the following steps: 

 

 1. The value of f for the ith object is xi f , and f has Mf 

ordered states, representing theranking 1, : : : , Mf . Replace 

each xi f by its corresponding rank, ri f 2 f1, : : : , Mf g. 

 2. Since each ordinal variable can have a different number 

of states, it is often necessary to map the range of each 

variable onto [0.0,1.0] so that each variable has equal 

weight. This can be achieved by replacing the rank ri f of 

the ith object in the f th variable by 

 3. Dissimilarity can then be computed using any of the 

distance measures for interval-scaled variables, using zi f to 

represent the f value for the ith object. 

 

3. Ratio-Scaled Variables 

 

 A ratio-scaled variable makes a positive measurement on a 

nonlinear scale, such as an exponential scale, approximately 

following the formula where A and B are positive 

constants, and t typically represents time. Common 

examples include the growth of a bacteria population or the 

decay of a radioactive element. 

 

“How can I compute the dissimilarity between objects 

described by ratio-scaled variables?” There are three 

methods to handle ratio-scaled variables for computing the 

dissimilarity between objects. 

 

• Treat ratio-scaled variables like interval-scaled variables. 

This, however, is not usually a good choice since it is likely 

that the scale may be distorted. 

 • Apply logarithmic transformation to a ratio-scaled 

variable f having value xi f for object i by using the formula 
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yi f = log(xi f ). The yi f values can be treated as interval 

valued, Notice that for some ratio scaled variables, log log 

or other transformations may be applied, depending on the 

variable’s definition and the application. 

 • Treat xi f as continuous ordinal data and treat their ranks 

as interval-valued. 

 The latter two methods are the most effective, although the 

choice of method used may depend on the given 

application. 

 

 d) Variables of Mixed Types: To compute the dissimilarity 

between objects described by variables of the same type, 

where these types may be either interval-scaled, symmetric 

binary, asymmetric binary, categorical, ordinal, or ratio-

scaled. However, in many real databases, objects are 

described by a mixture of variable types. In general, a 

database can contain all of the six variable types listed 

above. “So, how can we compute the dissimilarity between 

objects of mixed variable types?” One approach is to group 

each kind of variable together, performing a separate cluster 

analysis for each variable type. This is feasible if these 

analyses derive compatible results. However, in real 

applications, it is unlikely that a separate cluster analysis 

per variable type will generate compatible results. A more 

preferable approach is to process all variable types together, 

performing a single cluster analysis. One such technique 

combines the different variables into a single dissimilarity 

matrix, bringing all of the meaningful variables onto a 

common scale of the interval [0.0,1.0]. Suppose that the 

data set contains p variables of mixed type. The 

dissimilarity d(i, j) between objects i and j is defined as : 

 

 e) Vector Objects : In some applications, such as 

information retrieval, text document clustering, and 

biological taxonomy, we need to compare and cluster 

complex objects (such as documents) containing a large 

number of symbolic entities (such as keywords and 

phrases). To measure the distance between complex 

objects, it is often desirable to abandon traditional metric 

distance computation and introduce a nonmetric similarity 

function. There are several ways to define such a similarity 

function, s(x, y), to compare two vectors x and y. One 

popular way is to define the similarity function as a cosine 

measure as follows: 

 where xt is a transposition of vector x, jjxjj is the Euclidean 

normof vector x,1 jjyjj is the Euclidean norm of vector y, 

and s is essentially the cosine of the angle between vectors 

x and y. This value is invariant to rotation and dilation, but 

it is not invariant to translation and general linear 

transformation. 

 

III.TYPES OF CLUSTERING METHODS 

 

Many clustering algorithms exist in the literature. It is 

difficult to provide a crisp categorization of clustering 

methods because these categories may overlap, so that a 

method may have features from several categories. 

 

Nevertheless, it is useful to present a relatively organized 

picture of the different clustering methods. In general, the 

major clustering methods can be classified into the 

following categories. 

 

A. Hierarchical methods: A hierarchical method creates a 

hierarchical decomposition of the given set of data objects. 

A hierarchical method can be classified as being either 

agglomerative or divisive, based on how the hierarchical 

decomposition is formed. The agglomerative approach, also 

called the bottom-up approach, starts with each object 

forming a separate group. It successively merges the objects 

or groups that are close to one another, until all of the 

groups are merged into one (the topmost level of the 

hierarchy), or until a termination condition holds. The 

divisive approach, also called the top-down approach, starts 

with all of the objects in the same cluster. In each 

successive iteration, a cluster is split up into smaller 

clusters, until eventually each object is in one cluster, or 

until a termination condition holds. 

 

B. Density-based methods: Most partitioning methods 

cluster objects based on the distance between objects. Such 

methods can find only spherical-shaped clusters and 

encounter difficulty at discovering clusters of arbitrary 

shapes. Other clustering methods have been developed 

based on the notion of density. Their general idea is to 

continue growing the given cluster as long as the density 

(number of objects or data points) in the “neighborhood” 

exceeds some threshold; that is, for each data point within a 

given cluster, the neighborhood of a given radius has to 

contain at least a minimum number of points. Such a 

method can be used to filter out noise (outliers) and 

discover clusters of arbitrary shape. DBSCAN and its 

extension, OPTICS, are typical density-based methods that 

grow clusters according to a density-based connectivity 

analysis. DENCLUE is a method that clusters objects based 

on the analysis of the value distributions of density 

functions. 

 

C. Grid-based methods: Grid-based methods quantize the 

object space into a finite number of cells that form a grid 

structure. All of the clustering operations are performed on 

the grid structure (i.e., on the quantized space). The main 

advantage of this approach is its fast processing time, which 

is typically independent of the number of data objects and 

dependent only on the number of cells in each dimension in 

the quantized space. STING is a typical example of a grid-

based method. Wave Cluster applies wavelet transformation 

for clustering analysis and is both grid-based and density-

based. Grid based clustering methods 

 

D.  Model-based methods: Model-based methods 

hypothesize a model for each of the clusters and find the 

best fit of the data to the given model. A model-based 

algorithm may locate clusters by constructing a density 

function that reflects the spatial distribution of the data 

points. It also leads to a way of automatically determining 

the number of clusters based on standard statistics, taking 

“noise” or outliers into account and thus yielding robust 

clustering methods. Clustering high-dimensional data is a 

particularly important task in cluster analysis because many 

applications require the analysis of objects containing a 

large number of features or dimensions. For example, text 

documents may contain thousands of terms or keywords as 

features, and DNA microarray data may provide 

information on the expression levels of thousands of genes 

under hundreds of conditions. Clustering high-dimensional 

data is challenging due to the curse of dimensionality. 

 

 E. Constraint-based clustering is a clustering approach that 

performs clustering by incorporation of user-specified or 
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application-oriented constraints. A constraint expresses a 

user’s expectation or describes “properties” of the desired 

clustering results, and provides an effective means for 

communicating with the clustering process. Various kinds 

of constraints can be specified, either by a user or as per 

application requirements. Our focus of discussion will be 

on spatial clustering with the existence of obstacles and 

clustering under user-specified constraints. In addition, 

semisupervised clustering is described, which employs, for 

example, pairwise constraints (such as pairs of instances 

labeled as belonging to the same or different clusters) in 

order to improve the quality of the resulting clustering. 

 

F. Partitioning Methods: Given a database of n objects or 

data tuples, a partitioning method constructs k partitions of 

the data, where each partition represents a cluster and k _ n. 

That is, it classifies the data into k groups, which together 

satisfy the following requirements: (1) each group must 

contain at least one object, and (2) each object must belong 

to exactly one group. Notice that the second requirement 

can be relaxed in some fuzzy partitioning techniques.Given 

k, the number of partitions to construct, a partitioning 

method creates an initial partitioning. It then uses an 

iterative relocation technique that attempts to improve the 

partitioning by moving objects from one group to another. 

The general criterion of a good partitioning is that objects 

in the same cluster are “close” or related to each other, 

whereas objects of different clusters are “far apart” or very 

different. There are various kinds of other criteria for 

judging the quality of partitions. Given D, a data set of n 

objects, and k, the number of clusters to form, a partitioning 

algorithm organizes the objects into k partitions (k _ n), 

where each partition represents a cluster. The clusters are 

formed to optimize an objective partitioning criterion, such 

as a dissimilarity function based on distance, so that the 

objects within a cluster are “similar,” whereas the objects of 

different clusters are “dissimilar” in terms of the data set 

attributes. 

 

Classical Partitioning Methods: k-Means and k-Medoids: 

The most well-known and commonly used partitioning 

methods are k-means, k-medoids, and their variations. 

 

Example: The k-Means Method – A Centroid-Based 

Technique: The k-means algorithm takes the input 

parameter, k, and partitions a set of n objects into k clusters 

so that the resulting intracluster similarity is high but the 

intercluster similarity is low. Cluster similarity is measured 

in regard to the mean value of the objects in a cluster, 

which can be viewed as the cluster’s centroid or center of 

gravity. In k-means clustering, initially it randomly selects 

k of the objects, each of which initially represents a cluster 

mean or center. For each of the remaining objects, an object 

is assigned to the cluster to which it is the most similar, 

based on the distance between the object and the cluster 

mean. It then computes the new mean for each cluster. This 

process iterates until the criterion function converges. 

Typically, the square-error criterion is used, defined as 

where E is the sum of the square error for all objects in the 

data set; p is the point in space representing a given object; 

and mi is the mean of cluster Ci (both p and mi are 

multidimensional). In other words, for each object in each 

cluster, the distance from the object to its cluster center is 

squared, and the distances are summed. This criterion tries 

to make the resulting k clusters as compact and as separate 

as possible. 

 

        IV. CONCLUSION 
 
        Although classification is an effective means for 

distinguishing groups or classes of objects, it requires the 

often costly collection and labeling of a large set of training 

tuples or patterns, which the classifier uses to model each 

group. It is often more desirable to proceed in the reverse 

direction: First partition the set of data into groups based on 

data similarity (e.g., using clustering), and then assign 

labels to the relatively small number of groups. Additional 

advantages of such a clustering-based process are that it is 

adaptable to changes and helps single out useful features 

that distinguish different groups. 
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