

A Congestion Avoidance Scheme Based On Buffer

Occupancy
1Goree. Narsimhulu, 2 Dr.D. Sreenivasa Rao

1Research Scholar,department of ECE JNTU, Hyderabad,India

narsiroopa@gmail.com

2Professor ,Department of ECE

Jawaharlal Nehru Technological University, Hyderabad, India
dsraoece@jntuh.ac.in

Abstract— Recently many prominent web sites face so called

Distributed Denial of Service Attacks (DDoS). DDoS attacks

are a virulent, relatively new type of attack on the

availability of Internet services and resources. To avoid

denigration most of the commercial sites do not expose that

they were attacked that is the biggest challenges of the

researchers. Network congestion caused by DDoS attack can

be managed by AQM (Active queue Management).Random

Early Detection (RED) is one of the most prominent

congestion avoidance schemes in the Internet routers. To

overcome the limitations of the basic RED algorithm,

researchers proposed several variants of RED. For solving

this problem, this paper proposes a new mechanism to

improve RED algorithm, which is named BO-AURED (An

Adaptive RED Algorithm Combined With Buffer

Occupation and upper threshold). By matching router’s

buffer occupation with wq , minth , maxth,Uth and Pmax

parameter settings, to make BOAURED adapt to network

environment variation automatically. Simulation is done in

NS- 2.35 simulator environment. Simulation results show

that our new BO-UARED algorithm gives better performance

than RED and Adaptive RED. Comparisons are done in

terms of total average throughput, total packet drops, and

average packet drops. It will also increase adaptability of

RED.

Keywords- B O A URED algori thm, D D o S , R E D

algorithm, A da pt ive RED algorithm, AQM, Packet

Drops, Throughput.

I. INTRODUCTION

An aim of an internet is to provide scalable, open [1] and

secured network. Confidentiality, authentication, message

integrity and non-repudiation are the basic aspects of the

internet security. Distributed denial of service (DDoS)

attack targets the availability of services on the Internet. It

is one kind of Denial of service attack. High bandwidth

traffic aggregates may occur during times of flooding based

DDoS attack.[2] This can make network congested and bring

servers down with huge packets. DDoS flows that do not

cut down their sending rates after their packets are

dropped.[3]The defence mechanism of DDoS is one the

aggregate based congestion control. Active Queue

Management (AQM) algorithms are the key technology of

congestion control.[3] The main focus on this research is to

study Random Early Detection (RED) congestion control

algorithms and also to provide effective solution to avoid

congestion collapse of network services. We propose new

algorithm using existing RED algorithm. We introduced

new threshold Uth(Upper Threshold) and considering buffer

occupancy of router and have modified RED algorithm.

Simulation is done in NS 2.35 simulator. Simulation results

are compared with RED and Adaptive RED with our

proposed BO-AURED algorithm. Results are in terms of

throughput and packet drops.

This paper is organized as follows. Chapter II gives the

basic idea about DDoS attack while chapter III describes

basic RED algorithm, RED drop function, and problems in

RED. In chapter IV our proposed algorithm and

BOAURED packet Drop function is explained. Chapter V

simulation results and comparisons are shown.

II. RELATED WORK

DDoS attacks are a virulent, relatively new type of attack

on the availability of Internet services and resources.[3]

DDoS attacks are highly distributed, well-coordinated,

offensive assaults on services, hosts, and infrastructure of

the Internet. Effective defensive countermeasures to DDoS

attacks will require equally sophisticated, well-coordinated,

monitoring, analysis, and response.[4]

A malicious host controls large number of zombies which

causes network congestion due to DDoS attack. Congestion

control algorithm RED is used for congestion management.

The RED algorithm is a representative AQM algorithm, and

is also the only candidate algorithm recommended by

RFC2309. The ability of AQM to detect incipient

congestion and convey congestion notification to the end-

hosts enables the sources to reduce their sending rates prior

to buffer overflow. ECN is used in conjunction with AQM

for signaling congestion to sources using packet marking

instead of dropping packets.[5]

The basic idea of RED congestion control mechanism is to

estimate the probability of packet marking for the

realization of early notification on the calculation of the

average queue length.[6] RED gateways keep the average

queue size low while allowing occasional bursts of packets

in the queue.[7] There are still some drawbacks in RED

algorithm. Some improved RED algorithms are such as

ARED, FRED, SRED and etc.[7] It is little bit difficult to set

configuration parameters of RED to keep network

environment stable. Theoretical analysis and simulation

results all show that the packet loss and throughput are

better that RED and ARED.

III. BASIC RED ALGORITHM

A. Random Early Detection Algorithm

RED can detect congestion by monitoring the average

queue length of the output of router, and randomly chooses

connections to notify congestion once the average queue

length is close to congestion. The core of RED is to

calculate the average queue length from the current queue

length by the EWMA (Exponentially Weighted Moving

Average)[6].The average length of the queue is calculate

 () ---(1)
Where is the queue weight of the instantaneous queue

size, 0 ≤ ≤ 1; and during sampling, q is the

instantaneous queue size. The actual queue size increases

rapidly, for Internet traffics are burst or short-time

congestion. The formula for temporary packet discard

probability of RED is expressed as : [6]

International Journal of Advanced and Innovative Research (2278-7844) / # 821 / Volume 5 Issue 4

 © 2016 IJAIR. All Rights Reserved 821

 {

 ≤ ≤

-

(2)

Pa : Current packet marking probability
Pa = Pb/(1 − c × Pb)
where c is a counter to record the un-dropped (or

unmarked) packets which has arrived after last dropped (or

marked) packet. As the c increases, the final drop

probability P increases slowly. So the dropping packets

consecutively can be avoided.

Where is the largest packet drop probability.

Formula (2) shows the packet discard probability that

depends upon the value of the average queue length

(. Following Figure 1 shows the RED drop function.

Figure.1.RED drop function

It is clear that RED algorithm monitors the average queue

size and drops (or marks when used in conjunction with

ECN) packets based on a set of statistical variables. And

the calculation of drop rate for RED algorithm is related to

the parameters of maxth, minth and wq as they mentioned

above. RED performance is sensitive to the number of

competing sources/flows. It is highly sensitive to its

parameter settings. In RED, at least 4 parameters, namely,

maximum threshold (maxth), minimum threshold (minth),

maximum packet dropping probability (Pmax), and

weighting factor (wq), have to be properly set. RED

performance is sensitive to the packet size. With RED, wild

queue oscillation is observed when the traffic load

changes.With the aim to get a more reasonable, dynamic

and real time algorithm, this paper proposes BO-AURED

which combines parameter settings of the RED algorithm

with the buffer occupation and introduced upper threshold

(Uth) to drop the packet less.

IV. PROPOSED BOAURED ALGORITHM

The motivation of BO-AURED is considering the variation

of current buffer occupation effect and we have introduced

new Threshold Uth(Upper threshold) for better use of buffer

space, to queue more packets which reduces packet drops

due to constant packet drop probability pa is 1 when average

queue size is greater than maxth. As in RED and other

enhanced RED algorithm pa increases linearly up to packet

dropping probability maxp. If average queue size goes

greater than maxth then pa is set to 1 and all incoming

packets are dropped. In order to get full advantage of the

queue buffer packet drop-probability is calculated by

another linear function when average queue size reaches

between maxth threshold and Uth threshold. This paper

combines the wq, minth, maxth ,maxp and Uth threshold

parameters calculation with the current buffer occupations

follows. In this paper, current buffer occupation is the rate

that all of the current packets occupy the buffer.

Br = Qc/Bf ----(3)

where, Qc is instantaneous queue size; Bf is the setting of

buffer size. And Br is current buffer occupation in this

paper. Though Floyd suggests us that wq should be set as

0.002,it is hard to meet the requirements for low or heavy

loads variation of network with static variable. When the

value of itis not given, the NS2.35 uses (4) to compute the

value of wq,

wq = 1.0 − exp(−1.0/Bw) ------(4)

where Bw is the value of band width. In order to combine

the wq with current buffer occupation,

the algorithm replaces (4) with follow formula:

wq = [1.0 − exp(−1.0/Bw)] × (1/Br)------ (5)

When the buffer occupation is low, the wq should be

enhanced. The algorithm will let more packets coming in

the buffer, for this paper has changed the wq. When the

buffer rate is increased, the value of wq should be turn

down, for the buffer does not have large space to store lots

of packets. When the buffer occupation is low, the wq

should be enhanced. The algorithm will let more packets

coming in the buffer; for this paper has change the wq.

When the buffer rate is increased, the value of wq should be

turn down, for the buffer does not have large space to store

lots of packets. The control results of RED are quite

sensitive to the setting parameters of RED algorithm.

Current rule of thumb is to set maxth to three times of minth

by Folyd suggestions. The setting of minth is really

important, it effect on both low average delay and high link

utilization. But only the proper setting could get the balance

of low average delay and high link utilization. Although the

setting of minth and maxth are quite important, Floyd still

suggest us set minth as a static, when it is been arranged in

the simulation software. And the default value of minth is 5

packets in NS2. During the simulation processes, operators

always set the maxth half of the buffer size, and give the

value of minth one-third of the maxth. It is clearly that all

these ways are setting the minth and maxth as static value.

They are not efficient ways to get perfect results for

network congestion control, the network loads change all

the time. Referring to Ref. [8], this paper takes

instantaneous buffer occupation into consideration.

According to the common used value of minth and lots of

experiments, minth could be calculated as follows

minth = max(Qtarget,min)-------(5)

where minth takes the maximum value of Qtarget and min.

 {

----(6)

This paper only takes the positive integer results from (6)

for minth. When Bf is smaller than 100 packets, to get the

solutions of inequality, Bf should be larger than 42 packets.

The algorithm also sets maxth to 3 times of minth, so sets the

denominator as 3 in the Eq. (6). Based on a large amount of

experiments, we find the 0.6 which is the coefficient of Bf,

is the best value to balance the drop rate and the delay time.

When Br is larger than 0.6.

Qtarget = targetdelay × [Bw/(8 × meanpacket)]/2------ (7)

where Qtarget is the result variable of (5). The variable of

targe tdelay will be set as target delay time in the

simulation.

And meanpacket is the value of average packet sizes. When

the value of Br is approximate to 0.6, to avoid minth

becoming too low, (5) checks the value of minth real time.

When the value of min is lower than the Qtarget, then minth

International Journal of Advanced and Innovative Research (2278-7844) / # 822 / Volume 5 Issue 4

 © 2016 IJAIR. All Rights Reserved 822

takes the value of Qtarget.and when the value of min is

higher than the Qtarget, then minth takes the value of min.

Uth will be 4* of the minth will be is set and Uth < ¾ th of the

Buffer Size according to rule of thumb.[8]

When average queue size is between maxth and Uth packet

drop probability using our derived equation and packet is

marked with probability pb.

Pb = (1 - Maxp)*((avg – Maxth)/(Uth – Maxth))---- (8)

Pa = Pb(1- count *Pb)------(9)

In the existing RED algorithm packet marking probability

is directly set to 1 when average size reaches to the maxth so

all the incoming packets are marked and dropped with

probability 1 hence buffer space is wasted. For better buffer

space utilization we have introduced new threshold Uth. In

our proposed algorithm buffer space is utilized effectively,

this will improve the performance of RED.

Following Figure: 2 shows the packet drop function of

BO-AURED algorithm

FIGH.2. packet drop function of BO-AURED algorithm

There is another important parameter, Pmax to adapt the

performance of algorithm. We know ARED’s principal is

to focus on adapting Pmax, according to the changes in the

network load, thus gives more stable queue size which

means a predictable queue delay. ARED algorithm as

shown in Fig.3

Figh.4. adapting Pmax in ARED

Calculates Pmax every interval seconds. Here, target is

used as

a special target queue length, which is calculated as

follows:

target = 0.4 × (maxth − minth)-------(10)

In order to make Pmax adapted network loads, this paper

improve the method of calculating Pmax. When buffer

occupation is low, that means buffer has large space for the

incoming packets, Pmax should be decreased. When the

buffer occupation comes high, Pmax should be enlarged.

The procedure of calculating Pmax for BO-AURED is

shown in Fig. 4. Adapting Pmax in BOAURED.

Figh.4. adapting Pmax in BOAURED

V. SIMULATION AND RESULTS

As it is mentioned above, BO-AURED algorithm adapts to

network variation automatically and real time. This paper

performs a set of experiments using the NS2.35 The

simulations aims to prove: first, BO-AURED algorithm has

the smoother average queue; second, BO-AURED

algorithm could get both low drop rate and low average

delay time in the busty-traffic; third, when it comes to the

heavy loads network environment, BO-AURED could

adapt its parameters automatically and get low drop rate

and test correctness of (5), especially sets the buffer size as

700 packets.

A. Network topology

Source ports of S1 ... Sn−1, and Sn send TCP or UDP flows

to destination port of D1. Here n is a parameter, means

source port number. The common settings of the three

experiments are shown as follows: Source ports of S1 to Sn

send TCP or UDP flows to destination ports D1; R1 and R2

are two routers; making R1 loaded RED, ARED and BO-

AURED respectively. The time of the four ports to begin is

different by 1ms, 4ms, 8ms and 5ms [9].Parameter settings

for RED and ARED: wq = 0.002, Pmax = 0.02. This paper

sets α = 0.01 and β = 0.9 to ARED in 3 experiments [10].

To BO-AURED, we no need to set any parameter rather

buffer space, for they could adapt it parameters

dynamically. Meanwhile, average packet sizes are 1000

bytes; also the target delay time is 5 ms for every algorithm.

Fig.5. simulation topology

B. Experiment 1:testing the instantaneous performance

This experiment tests the instantaneous performance for

RED,ARED,BO-AURED in 7-second simulation.

This paper also displays average drop rate, the number of

arrived packets (short by arrived) and average delay time of

3 algorithms in Table I. The plots demonstrate that average

queue length of BOAURED works more stable and smooth,

especially at the beginning of the simulation with low

average delay time. These experiments prove that,

BOAURED algorithm has smooth average queue, lower

drop rate and lower average delay time compared with

other algorithms.

Every interval seconds:

If(Qavg>target and Pmax <0.5)

Increase Pmax

Pmax=Pmax+(α);

Else if (Qavg<target and Pmax >0.01)

decrease Pmax

Pmax=Pmax×(β);

Every interval seconds:

If(Qavg>target and Pmax <0.5)

Increase Pmax

Pmax=Pmax+(α×);

Else if (Qavg<target and Pmax >0.01)

decrease Pmax

Pmax=Pmax×(β ×);

International Journal of Advanced and Innovative Research (2278-7844) / # 823 / Volume 5 Issue 4

 © 2016 IJAIR. All Rights Reserved 823

TABLE .I.TESTING THE INSTANTANEOUS PERFORMANCE

 drop rate (%) arrived (packet) average delay (s)

RED 0.8216 3774 0.0664

ARED 0.9801 3774 0.0608

BOAURED 1.1652 3774 0.0573

C. Experiment 2: testing the performance under the burst

data flows

Experiment 2 illustrates the performance under burst. Table

II also proof BOARED gets both low drop rate and low

average delay time, for it binds the calculation of

parameters dynamically. Because BOARED could allowed

more packets to arrive in the buffer, when it hasn’t been

fully used. So it may made more packets arrive at the

destination with a low drop rate and lower average delay

time, when the network load becomes heavily.

TABLE .II.TESTING THE PERFORMANCE UNDER THE BURST

DATA FLOWS

drop rate (%) arrived (packet) average delay (s)

RED 1.9701 13548 0.0659

ARED 1.9500 13543 0.0582

BOAURED 1.8941 13543 0.0550

D. Experiment 3: testing the performance under heavy

loads

Experiment 3 aims to test the performance under heavy

loads for 3 algorithms. the BO-ARED becomes stable

quickly and its average queue length plots are more smooth

than other RED’s. The data of experiment 3 is shown in

Table III. It demonstrates that the BOAURED algorithm

still takes the low drop rate with low average delay time

under heavy loads. Experiment 3 proves that BOAURED

has good performance under the high pressed the network

environment.

TABLE.III.TESTING THE PERFORMANCE UNDER HEAVY

LOAD

 drop rate (%) arrived (packet) average delay (s)

RED 4.988 27161 0.6597

ARED 10.71 27159 0.3831

BOAURED 5.53 27160 0.5639

It is clearly that BOAURED could achieve the lowest drop

rate both during the short time simulations and long-time

busty traffic simulations compared with RED, ARED and

BOAURED, and also with low average delay time.

V. CONCLUSION

This paper has proposed a new algorithm BOAURED,

which revises the sensitivity of parameter settings of RED.

And it adjusts its parameters to adapt to network changing

automatically and real time. The analysis and simulations

all demonstrate that the BOAURED algorithm can be

suitable to network variation rapidly and reduces both drop

rate and delay time.

REFERENCES
1) Ketki Arora, Krishan Kumar, Monika Sachdeva “Impact

Analysis of Recent DDoS Attacks” International Journal on

Computer Science and Engineering (IJCSE)ISSN : 0975-3397

Vol. 3 No. 2 Feb 2011

2)Takanori Komatsu and Akira Namatame,"Effectiveness of

close-loop congestion controls for DDoS attacks",Intelligent and

Evolutionary Systems, Springer, Vol. 187, pp. 79-90, 2009.

3)Chandni M Patel, Viral H Borisagar,” Survey On Taxonomy Of

DDoS Attacks With Impact And Mitigation Techniques”

International Journal of Engineering Research & Technology

(IJERT) Vol. 1 Issue 9, November- 2012 ISSN: 2278-0181

4) Christos Papadopoulos, Robert Lindell, John Mehringer,

Alefiya Hussain, Ramesh Govindan” COSSACK: Coordinated

Suppression of Simultaneous Attacks” Proceedings of the

DARPA Information Survivability Conference and Exposition

(DISCEX’03) 0-7695-1897-4/03 © 2003 IEEE

5)Saurabh Sarkar, Geeta Sikka, Ashish Kumar,"Evolution and

Optimization of Active Queue Management Algorithms over High

Bandwidth Aggregates",International Journal of Computer

Applications (0975 – 888) Volume 48– No.12, 11-16,June 2012

new RED

6) Dashun Que, Zhixiang Chen, Bi Chen,"An Improvement

Algorithm Based on RED and Its Performance

Analysis",ICSP2008 Proceedings, 978-1-4244-2179-4/08 2005-

2008 ©2008 IEEE

7) S. Floyd and V. Jacobson, Random Early Detection Gateways

for Congestion Avoidance,IEEE/ACM Transactions on

Networking, Vol. 1, No.4, pages 397- 413, August 1993

8) S. Floyd. RED: Discussions of setting parameters.

http://www.icir.org/floyd/REDparameters.txt

9) Xiaoping Yang, Hong Chen, Pingping Xiao, ”An Algorithm of

Enhancing RED Fairness”, The 7th World Congress On Intelligent

Control And Automation, WCICA 2008, pp.2149-2152,

1109/WCICA, Jun. 2008.

10) S. Floyd, Ramakrishna Gummadi and Scott Shenker,

”Adaptive RED: An Algorithm for increasing the Robustness of

RED’s Active Queue Management.”,[Online] available

:nhttp://icir.org/floyd/papers/adaptiveRed.pdf, Aug. 2001.

International Journal of Advanced and Innovative Research (2278-7844) / # 824 / Volume 5 Issue 4

 © 2016 IJAIR. All Rights Reserved 824

http://www.icir.org/floyd/REDparameters.txt

