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Abstract: It is now becoming increasingly well known 

that signal and image processing are getting great 

improvements in performance by using various wavelet 

based methods. In order to achieve better 

understanding of wavelet based methods, Haar , 

daubechies, symlet, and Biorthogonal wavelets are 

discussed. Image is decomposed into four sub bands 

using DWT. Secret image is hidden by alpha blending 

technique in the corresponding sub bands of the 

original image. During embedding, secret image is 

dispersed within the original image depending upon the 

alpha value. Extraction of the secret image varies 

according to the alpha value.The proposed transforms 

are compared using different levels in DWT based 

image steganography by using statistical parameters 

such as peak-signal-to-noise-ratio (PSNR) and mean 

square error (MSE). The experimental results 

demonstrate that the watermarks generated with the 

proposed algorithm are invisible and the quality of 

watermarked image and the recovered image are 

improved.  

 

Keywords–  Wavelet , Haar,Biorthogonal, db, symlet, 

alpha blending. 

 

 
I.INTRODUCTION 

Steganography [1, 2, 3] is the process of hiding of a 

secret message within an ordinary message and 

extracting it at  destination. Any other person viewing 

the message will fail to know that it contains 

secret/encrypted data. The word steganography 

comes from the Greek word “steganos” which means 

“covered” and “graphei” meaning “writing”. 

 

 Converting image from one format to another format 

and back could destroy information secret in LSB‟s. 

Stego-images can be easily detected by statistical 

analysis like histogram analysis. This technique 

involves replace N (least significant bit of each pixel 

of a container image) with the data of a secret 

message. Stego-image gets destroyed as we increase 

N . In frequency domain, we can hidedata by using 

Discrete Cosine Transformation (DCT) [4]. The  

limitation of this approach is blocking artifact. 

Grouping the pixel into 8x8 blocks and then 

transforming the pixel blocks into 64 DCT co-

efficient each. Any modification of a single DCT co-

efficient will affect all 64 image pixels in that block. 

Discrete Wavelet Transformation (DWT)approach 

[5]is one of the modern techniques of Steganography.  

In the Discrete Wavelet Transform spread spectrum 

based approach, here binary secret images are 

dispersed within selective sub-bands using a pseudo-

random sequence and a session based key . 

 

Wavelets are mathematical functions that divide data 

into different frequency components, and then study 

each and every component with a resolution matched 

to its scale. They have various advantages over 

traditional Fourier methods in analyzing physical 

situations where the signal contains discontinuities 

and sharp spikes. Wavelets were developed 

independently in the fields ofelectrical engineering,  

seismic geology,  mathematics and quantum physics. 

Interchanges between these fields during the last ten 

years have led to many new wavelet applications 

such as human-vision,image compression,  radar, 

turbulence and earthquake prediction. 

 

 

II. DISCRETE WAVELET 

TRANSFORMATION 
The wavelet transformation describes a multi-

resolution decomposition process in terms of 

expansion of an Image onto a set of wavelet basis 

function. Discrete Wavelet Transformation (DWT) 

having its own excellent space frequency localization 

properly. Applying DWT in 2D images corresponds 

to 2D filter image processing in each dimension. The 

input image is divided into 4 non-overlapping multi-

resolution sub-bands by the filters, namely (LL1), 

(LH1), (HL1) and (HH1). The sub-band (LL1) is 

further processed to obtain the next coarser scale of 

wavelet coefficients, until some final scale “N” is 

reached. When “N” is reached, we‟ll have 3N+1 sub-

bands consisting of the multi-resolution sub-bands 

(LLN) and (LHX), (HLX) and (HHX) where “X” 
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ranges from 1 until “N”. Generally most of the Image 

energy is stored in these sub-bands. 

 

 Discrete wavelet transform (DWT) have certain 

properties that makes it better choice for image 

compression. DWT is especially suitable for images 

that have higher resolution. It possesses the property 

of Multi-resolution i.e., it represents image on a 

different resolution level simultaneously [6]. The 

resolution is determined by a threshold below which 

all fluctuations or details are ignored. Due to higher 

decor -relation property, DWT can provide higher 

compression ratios and better image quality [7]. 

DWT offers adaptive spatial-frequency resolution 

(better spatial resolution at high frequencies and 

better frequency resolution at low frequencies). 

Therefore, DWT are potentiality for good 

representation of image with fewer coefficients [5]. 

DWT Converts an input series into one low-pass 

wavelet coefficient series and one high-pass wavelet 

coefficient series (each of length n/2) given by: 

𝐻1= 𝑥2𝑖−1 𝑌−1 𝑀=0 𝑆𝑚(Z) (a) 

𝐿1= 𝑥2𝑖−1 𝑌−1 𝑀=0 𝑡𝑚(Z) (b) 

 Where 𝑆𝑚 (𝑍)and𝑡𝑚 (𝑍) are called wavelet filters, Y 

is the length of the filter, and i = 0, (𝑛2 -1). In 

practice (a) and (b) is applied recursively on the low-

pass series until a desired number of iterations are 

reached. 

 

To perform third level decomposition, we apply 

DWTagainto LL2 band which decompose this band 

into the four sub-bands – LL3, LH3, HL3, HH3. This 

results in total 10 sub-bands per component. LH1, 

HL1, and HH1 contain the highest frequency bands 

present in the image tile, while LL3 contains 

thelowest frequency band. The three-level DWT 

decomposition is shown as in Fig.1 

 

.  

III. ALPHA BLENDING TECHNIQUE 

It is away of mixing the two images together to form 

a final image. Alpha Blending technique[8] can be 

accomplished in computer graphics by blending each 

pixel from the first source image with the 

corresponding pixel in the second source image.  

The equation for executing the alpha blending 

technique is as follows,  

 

Final image‟s pixel = alpha * (First image's source 

pixel) +  

(1.0-alpha) * (Second image's source pixel)  

 

The blending factor or percentage of colors from the 

first source image used in the blended image is called 

the "alpha." The alpha value used in algebra is in the 

range 0.0 to 1.0, instead of 0 to 100%.  

Alpha-blending blind Image hiding technique to 

generate Stego image is given by 

 

Stego Image Embedding:  

 

SII=alpha*(CI) + (1.0-alpha)*(SI) (1)  

 
Figure 2: watermark embedding technique 

 

Stego Image Extraction:  

RSI= (SII - alpha*CI) (2)  

Where, RSI=Recovered Stego Image, SII=Stego 

image, CI= selected sub-band of the cover image, SI= 

selected corresponding sub-band of the secret image. 
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Figure 3: watermark extraction technique 

 

IV. HAAR WAVELET 

Any discussion of wavelets begins with HAAR 

wavelet [9], the first and simplest. HAAR Transform 

is orthogonal and real, results in a very fast transform 

[10]. HAAR wavelet is discontinuous, resembles a 

step function and represents the same wavelet as 

Daubechies db1. It is memory efficient, fast and 

exactly reversible without the edge effect [10]. The 

most distinctive feature of HAAR Transform lies in 

the fact that it lends itself easily to simple manual 

calculations.  

 

For an input, represented by a list of numbers, the 

HAAR wavelet may be considered to simply pair up 

the input values, storing the difference and then 

passing the sum. This process is repeated recursively. 

The Haar wavelet is the simplest wavelet transform. 

It is also the only symmetric wavelet in the 

Daubechies family and the only one that has an 

explicit expression in discrete form. Haar wavelets 

are related to a mathematical operation called Haar 

transform, which serves as a prototype for all other 

wavelet transforms[11]. Like all wavelet trans-forms, 

the Haar transform decomposes a discrete signal into 

two subsignals of half its length. One subsignal is a 

running average or trend, and the other subsignal is a 

running difference or fluctuation[12]. The Haar 

wavelet transform has the advantages of being 

conceptually simple, fast and memory efficient, since 

it can be calculated in place without a temporary 

array. Furthermore, it is exactly reversible without 

the edge effects that is the problem of other wavelet 

transforms. On the other hand, the Haar transform 

has its limitations because of its discontinuity, which 

can be a problem for some applications, like 

compression and noise removal of audio signal 

processing.  

 

During computation, the analyzing wavelet is shifted 

over the full domain of the analyzed function. The 

result of DWT is a set of wavelet coefficients, which 

measure the contribution of the wavelets at the 

locations and scales.  

 

The Daubechies wavelet transforms are defined in the 

same way as the Haar transform by computing the 

running averages and differences via scalar products 

with scaling signals and wavelets.  

 

V. BIORTHOGONAL WAVELET 

TRANSFORM 

It is well known that bases that span a space do not 

have to be orthogonal. In order to gain greater 

flexibility in the construction of wavelet bases, the 

orthogonality condition is relaxed allowing semi-

orthogonal, biorthogonal or non-orthogonal wavelet 

bases[13]. Biorthogonal Wavelets are the families of 

compactly supported symmetric wavelets. The 

symmetry of the filter coefficients is often desirable 

since it results in linear phase of the transfer 

function[13]. In the biorthogonal case, rather than 

having one scaling and wavelet function, there are 

two scaling functions that may generate different 

multiresolution analysis, and accordingly two 

different wavelet functions.  

This family of wavelets exhibits the property of 

linear phase, which is needed for signal and 

reconstruction of image. By using two wavelets, one 

for decomposition (i.e., on the left side) and the other 

for reconstruction (on the right side) instead of the 

same single one, interesting properties are derived. 

Analysis (decomposition) and synthesis 

(reconstruction) filter orders for Biorthogonal filters 

Specify the order of the analysis and synthesis filter 

orders for Biorthogonal filter banks as 1.1, 1.3, 1.5, 

1.7, 2.2, 2.4, 2.6, 3.1, 3.3, 3.5, 3.9, 4.4, or 5.5, 6.8. 

[14] Unlike orthogonal wavelets, Biorthogonal 

wavelets require 2 different filters one for the 

analysis and other for synthesis of an input. The first 

number is order of the synthesis filter while th second 

number is the order of the analysis filter. 

The dual scaling and wavelet functions have the 

following properties:  

1. They are zero outside of a segment.  

2. The calculation algorithms are maintained, and 

thus are very simple.  

3. The associated filters are symmetrical in 

nature.  

4. The functions used in the calculations are 
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easier to build numerically than those used in 

theDaubechies wavelets. 

 

VI. DAUBECHIES WAVELET 

This wavelet is similar tohaar wavelet but different in 

defining scaling signals and wavelets. It uses 

overlapping windows, so the high frequency 

coefficient spectrum reflects all high frequency 

changes. 

Ingrid Daubechies, one of the brightest stars in the 

world of wavelet research, invented what are called 

compactly supported orthonormal wavelets -- thus 

making discrete wavelet analysis practicable.  

The names of the Daubechies family wavelets are 

written as dbN, where N is the order, and dbis  the 

"surname" of  wavelet. The db1 wavelet, as 

mentioned above, is the same as Haar wavelet. 

The support length of  wavelet  is 2N - 1. The number 

of vanishing moments of  is N. 

Most dbN are not symmetrical. For some, the 

asymmetry is very pronounced. 

The regularity increases with the order. When N 

becomes very large,  and  belong to  where µ is 

approximately equal to 0.2. Certainly, this asymptotic 

value is too pessimistic for small-order N. Note that 

the functions are more regular at certain points than 

at others. It is energy preserving wavelet. 

The analysis is orthogonal. 

 

VII. SYMLET WAVELET 

Daubechies proposes modifications of her wavelets 

such that their symmetry can be increased while 

retaining great simplicity. It is modified version of 

Daubechies wavelet with increased symmetry. It is 

same as dbn. In symN, N is the order. Some authors 

use 2N instead of N. Symlets are only near 

symmetric; consequently some authors do not call 

them symlets.  

Symletwavelet are compactly supported orthogonal. 

Arbitrary number of vanishing moments are present. 

It has arbitrary regularity. 

 

VIII.RESULTS AND ANALYSIS 

Different wavelet families are present on which alpha 

blending technique is implemented. Alpha blending 

technique contains two constants (alpha) and (1-

alpha), meaning the sum of these two is 1. Here  two 

constants „k‟ and „q‟ in place of alpha and (1-alpha) 

are taken and keeping value of „k‟ constant , by 

changing values of „q‟ such that their sum has 5 

different values as {0.8, 0.9, 1, 1.1, 1.2} and it results 

PSNR for both stego image and recovered image is 

maximum when there sum is 1and MSE value is 

minimum when sum is taken as 1. 

First of all DWT is applied on image and then using 

alpha blending technique simulation result is 

obtained. Figure 4 shows the original cover image 

and image to hide. 

 

 

Figure 4: Cover Image and Image to hide 

All these results are performed and simulated in 

MATLAB (R2007b version 7.5). 

 
 

Figure 5: Cover Image and Stego Image 

 

 

 

             Figure 6: Image to hide and Recovered image 
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When k = 0.95 , q = 0.05 , k+q = 1 

 

Table 1: PSNR for recovered image 

** means more PSNR value than average or better 

than average 

 

Table 2: PSNR for stego image 

** means more PSNR value than average or better 

than average 

 

Table 3: MSE for recovered image 

## means less MSE value than average or better than 

average 

 

 

Table 4: MSE for stego image 

## means less MSE value than average or better than 

average 

By finding average values of all the four families we 

see that DB8 has more PSNR value than the average 

one in both cases i.e. stego image and recovered 

image and less MSE value than average. Therefore, 

DB8 is the best method to be chosen when we 

compare both stego and recovered image. 

 

IX. CONCLUSION 

Results shows that in case of stego image PSNR and 

MSE values of BIORTHOGONAL are best and of 

HAAR are worst, but in case of recovered image 

PSNR and MSE values of HAAR are best and of 

BIORTHOGONAL are worst. 

At values k+q=1,  best result tables are found of both 

PSNR and MSE. So, by calculating  average of these 

tables‟ values , the family which is providing best 

overall results is found. 

By finding average values of all the four families, 

different families shows different values, one shows 

more value than average in one case while less than 

average in other. But, out of these four families  DB8 

has more PSNR value than the average one in both 

cases i.e. stego image and recovered image and less 

MSE value than average. So from results it is 

concluded that DB8 is providing best results when 

we consider both stego and recovered image. 
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