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Abstract: In this paper, an adaptive bock algorithm with 

modified threshold using STFT for denoising of audio 

signals is proposed. The signal is first segmented into 

multiple blocks depending upon the minimum mean square 

criteria in each block, and then thresholding methods are 

applied for each block. All the obtained blocks after 

denoising of individual block are then concatenated in order 

to get the denoised signal. The Short Time Fourier 

Transform provides more coefficients than the Discrete 

Wavelet Transform (DWT), representing additional time-

frequency details of the signal. STFT gives more degree of 

freedom in terms of time-frequency resolution of audio 

signals. When an audio signal corrupted with Additive 

White Gaussian Noise (AWGN) is processed by using this 

algorithm, we obtained higher Signal to Noise Ratio (SNR). 

Hence, the proposed algorithm out-performs the other 

algorithms. Also the obtained denoised signal with this 

algorithm is close to the original signal.  

  

Keywords: STFT, Adaptive Block Selection, AWGN, SNR, 

Thresholding. 

 

1. Introduction 

In the field of denoising the sounds of musical 

instruments, time frequency based transforms play an 

important role. They allow us to work with a sound signal 

from both time and frequency perspectives 

simultaneously. Such transforms have traditionally been 

useful in studying the nature of the sound signal, noise, 

and in facilitating the application of aesthetically 

interesting and novel modification to specific sound 

signals [1]. Conventional Fourier analysis pioneered by 

Fourier in 1807 is a powerful tool to decompose a time-

domain signal into separate frequency components and 

the relative intensities of the individual frequencies are 

shown in the representation [1]. However, the temporal 

behavior of the signal’s frequency components is 

unknown in the conventional Fourier analysis. Unlike the 

conventional Fourier frequency domain, the joint time-

frequency (TF) domain provides a convenient platform 

for signal analysis by involving the dimension of time in 

the frequency representation of a signal. A 

straightforward way to acquire localized knowledge 

about the frequency content of the signal at different 

times is to perform the Fourier transform over short-time 

intervals rather than processing the whole signal at once. 

The resulting TF representation is the short-time Fourier 

transform (STFT) [2], which remains to date the most 

widely used method for the analysis of signals whose 

spectral content varies with time. Recent application 

examples of the STFT and its variants – e.g. the squared 

magnitude of the STFT known as the spectrogram – 

include signal denoising [3],[4], instantaneous frequency 

estimation [5],[6], and speech recognition [7]. Let’s take 

a look at a real-life example to illustrate the needs for the 

joint TF representations. Using a bat echolocation sound 

[8], Fig. 1.1 shows three different plots. By only looking 

at the time domain plot of the signal at the bottom, we 

can only see how the intensity or loudness varies with 

time. On the left of the main plot is the energy density 

spectrum, that is, the squared magnitude of the Fourier 

transform of the time signal. It indicates the relative 

intensity of each frequency components. The power 

spectrum tells us that the frequency samples mainly range 

from 50 to 200 samples, but it does not show when these 

frequencies happen. The main plot is a joint TF plot 

represented using the contour plot. From it, we can see 

the frequencies and their relative intensities happened at 

different time. For instance, the bat signal mainly consists 

of three nonlinearly FM chirps components overlapping 

in time. 

A noise reduction method based on STFT coefficients 

contraction [15] basically consists of three steps; 

 

1. Apply STFT to noisy signal as; 

                        Eq. (1.1) 

 

Where; y, s, z & W are the resultant noisy audio, clean 

audio signal, noise signal & the matrix associated to the 

STFT respectively. 

 

2. Thresholding is done for the obtained 

transformed coefficients. 

3. The desired signal is reconstructed by applying 

the inverse STFT to the thresholded STFT 

coefficients. 

 

2. Short Time Fourier Transform (STFT) 

2.1 The Continuous STFT 

The continuous Short-Time Fourier Transform (STFT) 

analysis of a signal  ( ) can be obtained as [1]: 

     (     )  ∫   (   ) ( )            

             Eq. (2.1) 

Where,  ( ) is the analysis window which determines the 

portion of  ( )  being analyzed. The analysis window 

may be chosen to be real or imaginary, but it is typically 

chosen to be a real and symmetric function centered at 

zero, tapering off to zero away from its centre. Hence, at 

each time instant, (2.1) computes the Fourier transform of 
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a short portion of the signal around   and thus the STFT 

can be regarded as a local spectrum of the signal  ( ) 

around time  . Accordingly, the short-time energy-

density spectrum  (     ) can be obtained as the 

squared magnitude of (1) i.e. 

  (     )  |     (     )|  and is commonly called 

the spectrogram. When a unit-energy window is used 

then the total energy of the spectrogram equals that of the 

signal.  

There exists an elemental relationship between the 

spectrogram and the Wigner distribution (WD); 

  (   )  ∫ (  
 

 
)   (  

 

 
)                Eq. 

(2.2) 

Namely, the convolution of the WD of the signal with the 

WD of the STFT window renders the spectrogram, i.e. 

  (     )  ∬  ( 
    )   (         )       

              Eq. (2.3) 

The WD is widely recognized for its high TF 

concentration [2],[3]. On the other hand, it suffers from 

the presence of cross-term interference which limits its 

readability, and prevents it from being strictly positive. 

Although the process in (2.3) is known to eliminate 

interference and restore positivity, it also smears the 

signal in the TF plane. So, despite its relative advantages, 

the spectrogram yields inferior TF signal localization 

compared to the WD. This deterioration depends on the 

smoothing kernel   (   ) of the two-dimensional 

convolution operation in (2.3). Since the Gaussian 

function exhibits the least amount of spread in the TF 

plane [4], it often is the preferred window type for STFT-

based signal analysis [5]. 

 

3. Audio Signal Denoising 

One of the key signal processing operation deals with 

removal of noise from signal and it seems to be a major 

problem. An unwanted signal gets superimposed over a 

clean and undistorted signal. How can we remove the 

superimposed signal without deterioration of original 

clean signal? Several algorithms have been developed for 

efficient removal of noise in various applications [9]. The 

method applied to denoise the signal [10] gets more 

sophisticated if the regularity of noise lessens. When 

signals pass through equipments and communicating 

medium, the noise is added naturally which results in 

signal contamination. “It is difficult to remove this 

unwanted noise without altering or degrading the original 

signal. Hence, the basic task in signal processing [9] is to 

denoise the audio signal with minimum degradation of 

the original signal. The major cause for pollution in audio 

signals is humming noise from audio equipments or 

buzzing and background environment noise” [14]. Hence, 

attenuation of noise while recovering the underlying 

signals is the primary objective of audio denoising.   

 

3.1. Thresholding Based Denoising  

The threshold is not ideal for musical instrument sound 

signals because of inappropriate correlation between the 

MSE & subjective quality & the more realistic presence 

of correlated noise. In this work a new time frequency 

dependent threshold estimation method is used. In this 

method firstly the standard deviation of the noise, σ is 

calculated for each block. For given σ, threshold for each 

block is calculated. Noise component removal by 

“thresholding the transformed coefficients is based on the 

observation” that in the signals, “energy is mostly 

concentrated in small number of transformed dimensions. 

The coefficients of these dimensions are relatively very 

large compared to noise that has its energy spread over a 

large number of coefficients. Hence by setting smaller 

coefficients to be zero, we can optimally eliminate noise 

while preserving important information of the signal”. In 

transformed domain, noise is characterized by smaller 

coefficients, while signal energy is concentrated in larger 

coefficients. This feature is useful for eliminating noise 

from signal by choosing appropriate threshold. Generally, 

“the selected threshold is multiplied by the median value 

of the detail coefficients at some specified level which is 

called threshold processing”. 

At each level of decomposition, “the standard deviation 

of the noisy signal is calculated. The standard deviation σ 

is given by” [12]: 

   
       (|  |)

      
           Eq. 

(3.1) 

Where   are high frequency transformed coefficients at 

j
th

 level of decomposition, which are used to identify the 

noise components &   is Median Absolute Deviation 

(MAD) at this level. “This standard deviation can be 

further used to set the threshold value based on the noise 

energy at that level. The modified threshold value is 

given by” [7]: 

       √    (        )         Eq. 

(3.2) 

Where T is threshold value, LM is the length of each 

block of noisy signal & k is the constant whose value is 

varying between 0-1. For determining the optimum 

threshold, value of k should be estimated. 

The “thresholding function also called shrinkage function 

is categorized as hard thresholding & soft thresholding 

function. The hard thresholding function is defined as to 

retain the transform coefficients which are greater than 

the threshold λ & sets the rest coefficients to zero”. The 

hard thresholding is defined as; 

  ( )  {
              | |   
                  

          Eq. 

(3.3) 

The choice of threshold λ is dictated by the signal energy 

& “the standard deviation σ of the noise”. If the 

transform coefficient is greater than λ, then it is retained 

assuming that it contributes to the original signal; else, it 
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is discarded because, in general, it is observed that high 

frequency noise contributes significantly to such 

transform coefficients. The “soft thresholding function 

shrinks the transform coefficients by λ towards zero”. 

Hence this function is also called as shrinkage function. 

The soft thresholding function is defined as; 

  ( )  {
                                      
                                  
                                    

        Eq. 

(3.4) 

 
Figure 3.1:       (a) Soft thresholding;                                               (b) Hard thresholding 

 

It is shown in figure 3.1 that “hard thresholding function 

is discontinuous at | x| = λ, due to this discontinuity hard 

thresholding function results in abrupt artifacts in 

denoised signal, especially when the noise level is 

significant. It has been shown” [10], that the soft 

thresholding gives lesser mean square error in 

comparison to hard thresholding & hence preferred over 

hard thresholding; but for sound signals, hard 

thresholding gives lesser amount of mean square error 

(MSE). 

Thresholding gives amplitude separation. To well 

separate signal and noise, thresholding is used. The 

purpose of a filter is for frequency separation and 

frequency signal restoration. So for amplitude separation 

thresholding is used [5]. Depending upon the type of 

noise present in the signal, he thresholding is determined 

basically in two forms is Soft Thresholding and Hard 

Thresholding. In Soft thresholding the coefficients which 

are within the Threshold value are consider as zero and 

subtract the Threshold value from the coefficients which 

are above the Threshold value. Depending upon the 

changes in the noise signal threshold value will change in 

soft thresholding. In Hard Thresholding , the coefficients 

which are within the Threshold value are consider as zero 

and the coefficients which are above the Threshold value 

remain same and are considered as actual coefficients of 

the signal. In hard thresholding the threshold value is 

fixed.  

 

3.2 Block Selection 

Most of the musical instrument sound signals are far too 

long to be processed in their entirety; for example a 8 

second sound signal sampled at 11 KHz will contain 

11,000 samples. Thus, as with spectral methods of noise 

reduction, it is necessary to divide the time domain signal 

in multiple blocks and process the each block 

individually. The block formation of the signal is shown 

in the Figure 3.2. The important task is to choose the 

block length. Berger et al. [14] shows that, blocks which 

are too shorts fail to pick important time structures of the 

signal. Conversely, blocks which are too long miss cause 

the algorithm to miss the important transient details in the 

sound signal. Because of binary splitting nature of STFT, 

it is good to decompose the signal by selecting 

appropriate length of each block of the power of two. 

 
Figure 3.2: Block formation of signal 

As discussed previously, the block size chosen must 

strike a balance between being able to pick up important 

transient detail in the sound signal, as well as recognizing 

longer duration, sustained events.  

 

3.3. Threshold Selection  

Donoho and Johnstone derived a general optimal 

universal threshold for the Gaussian white noise under a 

mean square error (MSE) criterion described in [12]. 

However this threshold is not ideal for musical 

instrument sound signals due to poor correlation between 

the MSE and subjective quality and the more realistic 

presence of correlated noise. Here we use a new time 

frequency dependent threshold estimation method. In this 

method first of all the standard deviation of the noise, σ is 

calculated for each block. For given σ, we calculate the 

threshold for each block. Noise component removal by 

thresholding the STFT coefficients is based on the 

observation that in musical instrument sound signal, 

energy is mostly concentrated in small number of STFT 

dimensions. The coefficients of these dimensions are 

relatively very large compared to other dimensions or to 

any other signal like noise that has its energy spread over 

a large number of coefficients. Hence by setting smaller 

coefficients to be zero, we can optimally eliminate noise 

while preserving important information of the signal. In 

STFT domain noise is characterized by smaller 

coefficients, while signal energy is concentrated in larger 

coefficients. This feature is useful for eliminating noise 

from signal by choosing the appropriate threshold. 

Generally the selected threshold is multiplied by the 
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median value of the detail coefficients at some specified 

level which is called threshold processing.  

3.4 Choice of Thresholding Level λ:  

Given a choice of block size and the residual noise 

probability level δ that one tolerates, the thresholding 

level λ .For each block width and length, λ is estimated 

using “Monte Carlo simulation“.  The partition of macro 

blocks in to blocks of different sizes is as shown below:  

 
Figure 3.3: Partition of macro blocks 

 

The adaptive block thresholding chooses the sizes by 

minimizing an estimate of the risk. The risk cannot be 

calculated since is unknown, but it can be estimated with 

Stein risk estimate. The adaptive block thresholding 

groups coefficients in blocks whose sizes are adjusted to 

minimize the Stein risk estimate and it attenuates 

coefficients in those blocks [10].  For audio signal 

denoising, an adaptive block thresholding non-diagonal 

estimator is described that automatically adjusts all 

parameters. It relies on the ability to compute an estimate 

of the risk, with no prior stochastic audio signal model, 

which makes this approach particularly robust. Thus an 

adaptive audio block thresholding algorithm that adapts 

all parameters to the time-frequency regularity of the 

audio signal. The adaptation is performed by minimizing 

a Stein unbiased risk estimator calculated from the data. 

The resulting algorithm is robust to variations of signal 

structures such as short transients and long harmonics.  

The coefficients (soft/hard thresholding}. The adaptive 

block thresholding chooses the Block sizes by 

minimizing an estimate of the risk.  

 

4. Proposed Audio Denoising Algorithm 

The proposed STFT based block denoising algorithm for 

reduction of white Gaussian noise is explained in the 

following steps:  

1. Choose a sound signal of suitable length. 

2.  Add “White Gaussian Noise” to the original signal 

depending upon the standard deviation N. 

3. Divide the noisy signal into blocks of different length 

and depending upon the length of the signal in time 

domain; preferably, number of samples, N, 2M where M 

is an integer. 

4. Calculate mean square error (MSE) for each block. 

5. Optimal block is the one resulting in minimum mean 

square error. 

6. Compute the “Short Time Fourier Transform (STFT)” 

of one block of the noisy signal at level 1. 

7. Estimate the standard deviation of the noise using (8) 

and determine the threshold value using (9), then apply 

the different thresholding techniques for time and level 

dependent STFT coefficients using (6) and (7). 

8. Take inverse “Short Time Fourier Transform (STFT)” 

of the coefficients obtained through step 7, which has 

reduced noise. 

9. Calculate “mean square error (MSE), peak signal to 

noise ratio (PSNR)” for de-noised signal. 

10. Repeat steps 4 to step 8 for other level of 

decomposition. 

11. Concatenate all the blocks of the de-noised signals 

obtained through step 9 and do averaging operation for 

MSE and SNR of the sound signal. 

 

Detailed Description of Proposed Denoising Algorithm 

Steps: 

 

i           Determine the SNR of the musical noise 

signal. 

Signal to noise ratio value calculate = 
           

    
  

            

           
. 

ii Apply Hanning window 

STFT Transformed components are divided into 

windows as: 

Window size = (
           

    
)                     

If window size is even Even window = (window size + 

1) 

If half size window calculate = (
             

 
). 

No of windows calculate = floor (
      

           
)*2  

iii Apply half overlapped window 

1. Y=Overlap Add (X,A,W,S); 

2. Y is the signal reconstructed signal from its 

spectrogram. 

3. X is a matrix with each column being the STFT 

(FFT) of a segment of signal. 

4. A is the phase angle of the spectrum which should 

have the same dimension as X. 

5. If it is not given the phase angle of X is used which 

in the case of real values is zero (assuming that it’s 

the magnitude). 

6. W is the window length of time domain segments if 

not given the length is assumed to be twice as long as 

STFT (FFT) window size. 

7.S is the shift length of the segmentation process for 

example in the case of non-overlapping signals it is 

equal to W and in the case of 50% overlap is equal to 

W/2. If not given W/2 is used. 

iv Find STFT coefficients 

1. Find out the STFT coefficient 
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2. STFT coefficient = zero’s (window size, no of 

window – 1) 

3. We calculate STFT coefficient small window 

4. Apply FFT and calculate small windows. 

v Determine The Block Thresholding 

1. Block Thresholding can be apply (noisy signal, time 

window, frequency sampling, and sigma noise). 

2. Block attenuation with bi-dimension (time & 

frequency). 

3. Block size selected by using section, SURE 

algorithm. 

4. Each block considered macro block. All macro blocks 

are same size. 

5. Macro block size = Lmax * Wmax. 

6. We calculate the maximum block length & width. 

7. Find the lambda value of each block. 

8. Each macro block divided small blocks same size. 

9. Calculate length & width of each block find the 

lambda value. 

vi Applying Thresholding Each Block. 

1. We apply hard Thresholding each block 

2. Hard Thresholding calculate ℇ above value. 

3. ℇ  below value can be considered error. 

vii Apply Inverse STFT. 

1. Inverse STFT converted time frequency domain 

signal to time domain signal. 

2. Window size = 
           

    
)                      

3. if window size is odd 

Odd window = (window size + 1) 

Half size window calculates = 
             

 
 Length. 

4. No of windows calculate = floor (
      

           
)*2 

viii  Compare the SNR of the musical noise signal 

and the denoised signal. 

1. Apply inverse STFT and calculate. 

2. STFT coefficient of different blocks are added. 

3. Get the reconstructed signal. 

4. Error can be calculate = original signal – 

reconstructed signal 

5. If the error is small. The reconstructed signal is better. 
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Figure 4.1: Proposed STFT based Adaptive Block Thresholding Audio Denoising Algorithm 

 

 

5. Results and Discussions 

The denoising algorithm developed in the previous 

section is applied to the sound samples of the various 

audio signals. Here in this work Mozart.wav is sampled 

at 11,000 samples per second. For experimental purpose 

the we have simulated Mozart.wav 5 dB, 10dB, 15 dB, 

20 dB & 25 dB. All noisy signals are denoised by our 

proposed algorithm gives better results than previous 

methods. 

 

For comparing the performance and measurement of 

quality of denoising, the Signal to Noise Ratio (SNR) is 

determined between the original signal Si and the signal 

denoised Sd , by our algorithm.  

           (
    

   
)
 

    Eq. (5.1) 

Where Smax is the maximum value of the signal and is 

given by,  

         (   (  )     (  ))     Eq. (5.2) 

And MSE is mean square error, given by:  

    
 

 
 ∑ [  ( )    ( )]

  
      Eq. (5.3) 

Where N is the length of the signal.  
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5.1 Spectrogram Analysis 

5.1.1 Spectrogram of Clean Audio  

 
Figure 5.1: Spectrogram of Clean Audio (Mozart.wav) 

5.1.2 Spectrogram of Noisy Audio (at 5dB) 

 
Figure 5.2: Spectrogram of Noisy Audio (Mozart.wav at -

5dB AWGN with σ=0.047) 

 

5.1.3 Spectrogram of Denoised Audio 

 
Figure 5.3: Spectrogram of Denoised Audio (Mozart.wav) 

5.3 Result Summary  

 

Performance comparison of Block Thresholding [1], [5], 

Block Thresholding (BT) with soft thresholding wavelet 

[4], Block Thresholding (BT) with hard thresholding 

wavelet [4], Minimum Mean Square Error Log Spectral 

Amplitude Estimation algorithm (MMSE-LSA) [5], 

Minimum Mean Square Error Log Spectral Amplitude 

Estimation algorithm by using Decision Direct method 

(MMSE-LSA-DD) [5] of Mozart signal for different SNR 

values is shown in the below table 5.1.The additive white 

Gaussian noise variance is taken at different σ, for 

obtaining different dB noisy signal. 

 

Signal 

& Noise  

SNR 

Noise 

Variance 

(σ) 

MMSE-

LSA-

DD 

[5] 

MMSE-

LSA 

[5] 

BT with 

Hard 

Thresholding 

Wavelet [4] 

BT with 

Soft 

Thresholding 

Wavelet [4] 

Block 

Thresholding 

[1],[5] 

Proposed 

STFT based 

Adaptive 

Block 

Thresholding 

SNR 

(dB) 

SNR 

(dB) 
SNR (dB) SNR (dB) SNR (dB) SNR (dB) 

Mozart 

5dB 

0.047 

 
7.625 7.625 9.84 11.57 14.90 15.46 

Mozart 

10dB 

0.026 

 
- 12.625 12.76 15.02 18.31 19.09 

Mozart 

15dB 

0.015 

 
- 17.727 15.97 18.75 22.03 23.05 

Mozart 

20dB 

0.008 

 
- 22.825 19.48 22.64 25.14 26.29 

Mozart 

25dB 

0.004 

 
- 28.785 23.62 27.43 30.29 31.25 

 

Table 5.1: Performance Comparison of Previous Work with Proposed Work 
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It is observed from Table 5.1 that the SNR values are 

dependent upon, type of thresholding and the level of 

decomposition. Soft thresholds are better than hard 

thresholds for denoising the sound signals for [4]. The 

selection of level of decomposition plays a significant 

role, and should be optimal for best denoising results. Our 

proposed work outperforms all existing techniques. 

 

6. Conclusion 

Adaptive block thresholding has been widely used in 

denoising the sounds of musical instruments and then the 

other denoising techniques. In this paper, STFT is used 

for denoising sound signal corrupted with additive white 

Gaussian noise. First, sound signal is divided into 

multiple blocks depending upon the optimal block size 

for each signal. Denoising of signal is performed with 

these optimal block sizes in time-frequency domain by 

thresholding the time-frequency coefficients. When each 

block is denoised, all the blocks are concatenated to form 

the final denoised signal. It is also observed that when 

modified threshold is used, the SNR values are increased. 

Higher thresholds remove the noise well but some parts 

of the original signal are also removed because it is not 

possible to remove the noise without affecting the 

original signal.  But using STFT having higher time-

frequency resolution the denoised signal is almost same 

as original signal. This proposed algorithm gives highest 

SNR compared to other algorithm after denoising. 
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